תחומים:

בחר הכל

ASV

הנדסה

מערכות קוונטיות

תחבורה חכמה

רכב אוטונומי

קול קורא

מכונת הנשמה

COVID-19

מטא-חומרים...

הנדסת חשמל

הנדסה מכנית

אולטרה-סגול

אולטרה-סגול

RoboBoat

MRI

קטגוריות:

בחר הכל

מחקר בפקולטה

מחקר

כנס

ברכות

פוקוס

חדשות

NEWS

מה מעניין אותך?

כל הנושאים
נשימה
זרימות חד-ורב-פאזיות
אווירונאוטיקה
טיפול במים
שריפה רב-פאזית
קרח קולואידי
קרח מלאכותי
עיוות קרח מלאכותי דו-ממדי
מערכות הנעה
Remote sensing of waves
AI
Cyber Security
Geophysical and environmental fluid dynamics
exotic mechanics
Environmental implications
environment
drone
Deep learning
CO2 storage
Health
chemical oxidation
Biomimicry
Biomimetics
Biomedical
Bioelectronics
Beetles
groundwater
Hemodynamics and Biomechanics
Radio Physics and Engineering
nanotechnologies
Optics
optical nanosensors
oil and natural gas
nanomaterials
Numerical models
numerical modelling
Nanoelectronics
Nonlinear optics
Molecular Electronics
Nanophotonics
Metamaterials
Mechanical Engineering
Interfacial Phenomena
materials for water
תמונה מהמחקר

מחקר

03.06.2021
חוקרים הצליחו להפוך ננו-חלקיק של גיר שקוף לזהב מלאכותי

חוקרים מאוניברסיטת תל אביב פיתחו טכנולוגיה חדשה היכולה להפוך את חלקיק השקוף לנוצץ ונראה לעין למרות ממדיו הקטנים. החוקרים טוענים שהפיתוח החדש יכול לשמש כבסיס לתרופות חדשניות בתחום הסרטן.

  • מחקר
  • הנדסת חשמל

פריצת דרך בתחום "חומרי העל": לראשונה בעולם, חוקרים מאוניברסיטת תל אביב הצליחו לפתח טכנולוגיה חדישה אשר מצליחה להפוך ננו-חלקיק של גיר שקוף לדמוי זהב מלאכותי נוצץ. כלומר להפוך את החלקיק השקוף לנוצץ ונראה לעין למרות ממדיו הקטנים. החוקרים טוענים שהפיתוח החדש יכול לשמש כבסיס לתרופות חדשניות בתחום הסרטן.

 

הטכנולוגיה החדשה פותחה ע"י פרופ' גינזבורג וד"ר נוסקוב מהפקולטה להנדסה באוניברסיטת תל-אביב ומספר מעבדות המובילות בעולם ובראשן: פרופ' גורין (SkolTech), ד"ר שירשין ( (MSU  ופרופ' פלמינג (USYD). המחקר  התפרסם בכתב העת המדעי היוקרתי Advanced materials.

 

בטבע נמצאים מגוון רחב של חומרים עם תכונות שונות. האתגרים החדשים הניצבים היום בפני האנושות בתחומים רבים ממריצים מדענים בכל העולם לפתח חומרים בעלי תכונות שאינם מצויים בטבע. חומרים מהונדסים אלה נקראים חומרי על או מטא-חומרים. הדוגמא אולי המפורסמת ביותר למטא-חומר הם גבישים עם מקדם שבירה שלילי שנחקרו רבות והדגימו ביצועי-על בהדמיה אופטית ומגוון רחב של יישומים אחרים.

 

אחד השימושים הנוספים בחומרי-על שהחוקרים מאוניברסיטת תל-אביב יחד עם עמיתיהם מאוניברסיטאות מובילות בעולם חשבו עליו הוא בתחום הרפואה ובתחום הטרונוסטיקה בפרט. מדובר בפיתוח מבנים זהירים (ננו-חלקיקים) חכמים והכנסתם אל תוך גוף האדם במטרה לבצע דיאגנוזה וריפוי בו זמנית במידת הצורך, למשל כאשר מדובר בתאים סרטניים. הרעיון של החוקרים היה להנדס מטא-חומר שיוכל בו זמנית לחדור לתאים חיים, להיות ביוקומפטבילי (תואם ביולוגית), לשאת תרופה וגם שיזוהה על-ידי מכשירי הדמיה. וזה בדיוק מה שהם עשו.

 

במסגרת המחקר, החוקרים פיתחו שיטה שבאמצעותה הם הפכו ננו-חלקיק של גיר פורוזיבי שאינו נקלט באמצעות מכשירי הדמיה למעין זהב מלאכותי נוצץ. בעזרת החדרת חלקיקי זהב שגודלם 3 ננומטר בלבד לתוך הגיר בשיטה חדשה החוקרים הצליחו להנדס רזוננס פלזמוני של המבנה כולו ובעצם לשנות את התכונות האופטיות שלו (3 ננומטר - פי 30 אלף דק יותר מעובי שערה ולפחות פי 100 קטן יותר ממה שאפשר לראות במיקרוסקופ אופטי רגיל) זאת, באמצעות ננו-טכנולוגיות ושיתוף פעולה עם מומחי מיקרוסקופיית אלקטרונים שהצליחו לראשונה להגיע להישג המרשים.

 

ד"ר רומן נוסקוב מסביר שמדובר בפריצת דרך שתאפשר בהמשך להוסיף פונקציות נוספות למטא-חומרים ויהיו לכך שימושים בתחומים רבים: "לפלטפורמה שהצלחנו להנדס ניתן להוסיף פונקציות נוספות כגון נראות למכשיר MRI, הזנת תרופות, ואף להפוך אותה לננו-לייזר או אבקה לוזרת שיש לה שימושים רבים מסמנים ביולוגיים עד לצביעת מוצרי נוי ביתיים. פרט לכך, הטכנולוגיה החדשה של הפיכת גיר לזהב מלאכותי תוכל להוזיל משמעותית את תהליך הייצור של פלטפורמות שונות הן לתרופות והן להתקנים אלקטרואופטיים".

 

"במהלך המחקר הצלחנו להוכיח כי ניתן לחמם את החלקיקים שפיתחנו בעזרת לייזר" מוסיף פרופ' פבל גינזבורג. "כיוון שיש לנו שליטה מלאה על תדר הרזוננס של החלקיק אנחנו יכולים לחממו באמצעות לייזר אינפרה-אדום חודר רקמות – וזה המפתח לתרמוטרפיה. למשל, עליית טמפרטורה של כמה מעלות בקרבת גידול סרטני יכולה להשמיד אותו, אם כי הדרך לשיטת הריפוי עוד ארוכה בגלל שחייבים לעשות סידרת ניסויי המשך עם תאים חיים".

 

לינק לכתבה ב ynet

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

מצפן

מחקר

02.05.2021
המצפן של האלקטרון

כיצד אפשר לחקות התנהגות של חומרים מגנטיים לא יציבים על ידי גלי אור המתקדמים בגבישים מהונדסים? מחקר חדש של קבוצת חוקרים מהפקולטה להנדסה ומהטכניון פותח אפשרויות חדשות להעברה ועיבוד של מידע אופטי, ובפרט ליישומים בתחום התקשורת והמחשוב הקוונטיים.

  • מחקר
  • הנדסת חשמל

על מנת להבין את האנלוגיה לחומרים מגנטיים ניזכר תחילה כיצד מחט המצפן יודעת להצביע על כיוון הצפון. הסיבה לכך היא שהמחט היא מגנט קטן, והשדה המגנטי של כדור הארץ מפעיל עליה כוח וגורם לה "להתיישר" כך שהחץ של המחט יצביע על הצפון.

 

תופעה דומה יכולה להתרחש כאשר אלקטרונים נעים בחומר מגנטי. בדומה למחט המצפן, גם האלקטרון מתנהג כמו מגנט קטן הנקרא ספין, ולכן אפשר לשלוט בתנועתו באמצעות שדה מגנטי. מחקרים שנעשו בשנים האחרונות גילו אפשרויות מעניינות לשליטה בזרם האלקטרונים באמצעות מצבים חדשים של חומרים מגנטיים, הקרויים "סקירמיונים", שבהם יש סידור מיוחד של השדה המגנטי בצורה המזכירה קיפוד ששוכב על הבטן – כל קוץ בגבו של הקיפוד מייצג את כיוון המגנט במקום מסוים במרחב. האתגרים המשמעותיים במחקר של חומרים אלה היא ביכולתנו לייצר את הקיפודים המגנטיים על צורותיהם השונות והמיוחדות. מסתבר שדווקא המבנים המגנטיים המעניינים יותר נוטים להיות לא יציבים, וכל הפרעה קטנה גורמת להם להתפרק ולאבד את צורתם.

 

פריצת דרך חדשה בנושא זה הושגה במחקר בהובלת הדוקטורנט אביב קרניאלי ומנחה הדוקטורט שלו, פרופ' עדי אריה, מבית הספר להנדסת חשמל בפקולטה להנדסה באוניברסיטת תל אביב. במחקר, שנערך עם פרופ' גיא ברטל והדוקטורנט שי צסס מהפקולטה להנדסת חשמל ע"ש ויטרבי בטכניון, מתוארת דרך שבה אפשר לגרום לקרני אור להתנהג כמו אלקטרונים עם ספין ולגרום לחומרים עם תגובה אופטית להתנהג כמו חומרים מגנטיים. "מכיוון שקל הרבה יותר להנדס אור וחומרים אופטיים, אפשר יהיה לחקור באמצעותם את התכונות של החומרים המגנטיים," אומר פרופ' אריה. "ב-30 השנים האחרונות הצטבר ידע עצום בתכנון של התקנים וטכנולוגיות בתחום המידע המגנטי, ועכשיו אפשר יהיה לקחת את הידע הזה ולייצר באמצעותו התקנים אופטיים."

בתמונה: הדוקטורנט אביב קרניאלי 

 

במאמר בחרו החוקרים לתת דוגמה להתקן עתידי שכזה, המבוסס על "אפקט הול הטופולוגי" – אפקט קוונטי המתרחש כאשר חלקיק ספין חולף ליד אותם "קיפודים מגנטיים". "אפשר לחשוב על האפקט הזה כמו 'בעיטת בננה' בכדורגל," מסביר אביב קרניאלי. "חלקיק שנע ליד סקירמיון מגנטי מעקל את מסלולו כתלות בכיוון הספין שלו, שזה דבר מאוד יעיל אם רוצים להחליט לאן עובר זרם – כמו מתג. בחומרים מגנטיים אמיתיים לא יודעים איך לשלוט באפקט הזה, אלא רק לראות שהוא קיים, ואנחנו מראים איך באמצעות האור אפשר לחקות את אפקט הול הטופולוגי כדי לחקור אותו, אבל גם כדי להשתמש בו למתגים מהירים".

 

התגליות הללו צפויות לפרוץ דרך לא רק בהבנתנו את החומרים המגנטיים, אלא גם לתת השראה להתקנים אופטיים חדשים השולטים באור, בדומה לדרך בה חומרים מגנטיים שולטים בזרמים מגנטיים. לדוגמה, החוקרים מעריכים כי המחקר עשוי להוביל לפיתוח טכנולוגיות חדשות להעברה ועיבוד של מידע אופטי. נוסף על כך, היכולות הקיימות כיום לשליטה בחלקיקי אור בודדים – פוטונים – יחד עם הרעיונות החדשים לעיבוד המידע המבוססים על הקיפודים המגנטיים, צפויים לפתוח דלתות וכיווני מחשבה נוספים לעיבוד אינפורמציה קוונטית באמצעות אלומות אור. 

 

פרופ' אריה מוסיף שההתקנים שאפשר לייצר אינם מוגבלים רק לדברים פשוטים כמו מתגים. "אחד הכיוונים המבטיחים ביותר בטכנולוגיות קוונטיות הוא השימוש בחלקיקים בודדים של אור, או בשמם המדעי פוטונים, לייצוג מידע. ההתקנים שאנחנו מציעים לא יעבדו רק עבור קרני אור רגילות, אלא גם עבור פוטונים בודדים, ובאותה היעילות. מאחר שכיום, פוטונים בודדים הם בחזית הפיתוח של תקשורת קוונטית ומחשבים קוונטיים, יכול להיות שהתגלית שלנו תאפשר דרכים חדשות ויעילות יותר להעביר ולעבד מידע קוונטי בצורה אופטית."

 

המחקר נתמך ע"י הקרן הלאומית למדע. אביב קרניאלי ושי צסס הם זוכי מלגת אדמס של האקדמיה הלאומית למדעים. 

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>
אוניברסיטת תל-אביב, ת.ד. 39040, תל-אביב 6997801
UI/UX Basch_Interactive