קטגוריות:

בחר הכל

ברכות

כנס

מחקר

מחקר בפקולטה

פוקוס

חדשות

NEWS

מה מעניין אותך?

כל הנושאים
Advanced chemical oxidation processes
AI
Beetles
Bioelectronics
Biomedical
Biomimetics
Biomimicry
chemical oxidation
CO2 storage
Cyber Security
Deep learning
drone
environment
Environmental implications
exotic mechanics
Geophysical and environmental fluid dynamics
groundwater
Health
Hemodynamics and Biomechanics
Interfacial Phenomena
Machine Learning
materials for water
Mechanical Engineering
Metamaterials
Molecular Electronics
Nanoelectronics
nanomaterials
Nanophotonics
nanotechnologies
Nonlinear optics
numerical modelling
Numerical models
oil and natural gas
optical nanosensors
Optics
Radio Physics and Engineering
Remote sensing of waves
Self-Assembled Monolayers
Smart Biomedical Materials
Social Contagion
Terahertz optics
Topological defects
Transient Free and Submerged Impinging Jets
Viral Marketing
Water waves
פיתוח מכונת הנשמה

מחקר

22.06.2020
קוד לאוויר לנשימה

צוות חוקרים מהפקולטה להנדסה אוניברסיטת תל אביב פיתחו כלי תוכנה, עם קוד פתוח למפתחים שיאפשרו לנבא ביצועים של מכונות הנשמה שמחוברות למטופלים במצבים שונים.

  • מכונות הנשמה
  • ניבוי ביצועים
  • מכונות הנשמה
  • ניבוי ביצועים

 

עם פרוץ מגיפת הקורונה התארגנה קבוצה של חוקרים מהפקולטה להנדסה באוניברסיטת תל אביב במטרה לעזור במאמץ המלחמתי. פרופ' אלכס ליברזון מבית הספר להנדסה מכנית וד"ר גדעון שגב מבית הספר להנדסת חשמל מובילים צוות לפיתוח של כלי תוכנה עם קוד פתוח למפתחים שיאפשרו לנבא ביצועים של מכונות הנשמה שמחוברות למטופלים במצבים שונים. מטרת הפרויקט היא לאפשר לקבוצות שמפתחות מכונות הנשמה "ביתיות" לבדוק כיצד המכונה שלהם תעבוד עם חולים ובנוסף לאפשר פיתוח מהיר של מערכות שליטה ובקרה למכונות הנשמה.

 

בקרת זרימת האוויר

כיום מדברים הרבה על ייצור של מכונות הנשמה "פשוטות" או ביתיות. הבעיה העיקרית עם מכונות כאלו היא שאין להן את כל מערכות הבקרה המתוחכמות שיש במכונות ההנשמה הרגילות. לדוגמא, במכונות הנשמה יש מספר חיישנים המאפשרים לשלוט בנפח האוויר שנכנס למטופל בכל נשימה ובלחץ האוויר המינימלי והמקסימלי בריאות שלו. עם זאת, העלות של חיישנים למדידת כמות האוויר שנכנס היא גבוהה וגם קשה להשיג כאלו היום. כתוצאה מכך, במכונות ההנשמה הפשוטות שמציעים לבנות היום, קשה לדעת כמה אוויר המטופל מקבל. "כאן הכלים שאנחנו מפתחים נכנסים. התוכנה שאנחנו פיתחנו מדמה את זרימת האוויר במכונה ובמטופל. היא לוקחת בחשבון פרמטרים כמו המצב הרפואי של המטופל ואת מספר הנשימות שלו בדקה והיא מחשבת את זרימת האוויר והלחץ בכל נקודה במכונה ובריאות של המטופל" מספר ד"ר שגב.

 

מבעיה לפתרון

בעזרת כלי כזה, מפתחים יכולים לתכנן טוב יותר את המערכות שלהם ולהתייחס לבעיות כמו: איך המכונה תעבוד עם מטופלים שונים? כיצד מוודאים שהמכונה מסונכרנת עם הנשימות של המטופל? או האם ניתן להציב חיישנים פשוטים במקומות שונים בשביל להעריך כמה אוויר המטופל מקבל?

 

בשלב הראשון, בנינו תוכנה שמדמה את הפעולה של מערכת המנשמה. מערכת הנמצאת בפיתוח ע"י צוות הכולל מהנדס מערכת, רופא, מהנדס חשמל, מתכנת ומתנדבים נוספים שעוזרים בכל הנדרש: מרדכי חלפון, ד"ר אלעד גרוזובסקי, רונן זילברמן, גיל בכר, עברי שפירא, רועי דרנל, סתיו בר-ששת. המנשמה מיועדת להקל על חולים מונשמים שאינם מורדמים. "יחד עם צוות הפיתוח של המנשמה, ערכנו סידרה של ניסויים שאפשרו לנו לכייל את החישובים שלנו ועל ידי כך לאפשר לתוכנה לנבא כיצד המכונה תעבוד עם מטופלים במצבים שונים. השלב הבא יהיה להתאים את החישובים למערכות שמבוססות על מנשם מסוג אמבו (מין בלון שלוחצים עליו כדי להכניס אוויר לריאות). יש הרבה מאוד אנשים בעולם שעובדים על מכונות מהסוג הזה כך שאנחנו חושבים שתוכנה כזו תוכל לעזור להם בצורה משמעותית" מסביר ד"ר שגב

 

על ה Software

התוכנה שלנו מבוססת על כלי תוכנה סטנדרטיים לתכנון מערכות לזרימת אוויר. היא פותרת את משוואות הזרימה בהינתן המצב של המטופל והפרמטרים של בקרת הנשימה שאנחנו בוחרים. התוצאה של החישוב היא איך הלחץ וזרימת האוויר משתנה  בריאות (או בכל נקודה אחרת במערכת) עם הזמן. ערכנו ניסויים עם ריאה מלאכותית והשווינו את תוצאות הניסוי לחישובים במצבים שונים. היה מאוד יפה לראות שאחת שמכוונים את החישוב, הוא מסוגל לתאר את ביצועי המערכת במגוון רחב של מצבים. מאחר ואנחנו עוסקים רק בחישובי הזרימה, החישוב לא מסוגל לתת מידע על התפתחות המחלה עצמה. עם זאת, חישובים כאלו יאפשרו למפתחים לכוון את מערכות ההנשמה שלהם כך שייצרו את הפרמטרים האופטימאליים עבור כל מטופל ועל ידי כך לשפר את המצב שלו.

 

"מספר המונשמים בארץ הוא די נמוך בהשוואה למדינות רבות בעולם. על כן, לשמחתנו, נראה שלא יהיה בארץ צורך במכונות הנשמה פשוטות. עם זאת, זה ממש לא המצב במקומות רבים בעולם. יש מדינות רבות בעולם השלישי שבכל המדינה יש פחות מעשר מכונות הנשמה. במדינות כאלו יש חוסר קיצוני במכונות הנשמה גם בימים שבשגרה ועל אחת כמה וכמה עכשיו עם התפרצות מגפת הקורונה. אנחנו מקווים שהפעילות שלנו תוכל לעזור במשהו בכל המקומות האלו" מסכם ד"ר שגב

 

לינק קישור לתוכנהhttps://osf.io/befqm/

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 ״זרימה לאחור״ של אור הנע קדימה

מחקר

12.03.2020
״זרימה לאחור״ של אור הנע קדימה

ד"ר אלון באב"ד, יחד עם תלמידי המחקר שלו הצליחו להדגים לראשונה את התופעה "זרימה לאחור" המבוססת על רעיון שעלה לפני כחמישים שנה במסגרת המכניקה הקוונטית אך לא הודגם מעולם בשום ניסוי

  • Optics
  • גלים
  • הנדסת חשמל
  • מכניקה קוונטית
  • Optics
  • גלים
  • הנדסת חשמל
  • מכניקה קוונטית

דמיינו כדור הנזרק קדימה בחלל חופשי. בכל רגע ורגע לאחר הזריקה, אם נמדוד את כיוון התנועה של הכדור הוא ימשיך לנוע קדימה. התוצאה הברורה הזו, כלל וכלל איננה מחויבת המציאות כאשר מדובר בתנועה של חלקיקים מיקרוסקופיים אשר תנועתם מצייתת לחוקים המוזרים של המכניקה הקוונטית. לפי תורה זו חלקיק יכול להתנהג גם כגל.

 

מאחר שגלים שונים יכולים להתחבר ביחד בתהליך הנקרא התאבכות, גם חלקיק הנע קדימה יכול להיות מורכב מאוסף של גלים אשר נעים כולם קדימה. ההשלכות של התאבכות זו יכולות להיות  מוזרות ולא אינטואיטיביות. עם בחירה נכונה של משרעות הגלים (עד כמה חזק הם מתנדנדים) והשהיה יחסית ביניהם ניתן ליצור חלקיק אשר למרות שהוא מורכב מגלים שכולם נעים קדימה, אם התנועה שלו תמדד במקומות מסוימים במרחב ובזמנים מסוימים – יתגלה שהחלקיק נע אחורה. בשאר המקומות והזמנים – אם תנועת החלקיק תימדד הוא ימצא כנע קדימה. למעשה הסיכוי למצוא את החלקיק נע קדימה הוא עדיין גדול בהרבה מהסיכוי למצוא אותו נע אחורה. כמו כן ההתאבכות המייצרת את אותה ״זרימה לאחור״ היא מאוד עדינה – שינוי קטן במשרעת של הגלים או בהשהיה היחסית שלהם תהרוס בקלות את תופעת ״הזרימה לאחור״. מאחר שהתופעה הזו כה רגישה, עד היום לא הצליחו להבחין בה בשום מעבדה בעולם.

 

במעבדתו של ד״ר אלון באב״ד מבית הספר להנדסת חשמל באוניברסיטת תל אביב הצליחו כעת להדגים את התופעה עם אור. הרעיון הבסיסי במרכז המחקר הוא שגם אור הוא תופעה גלית, וכמו החלקיק קוונטי, יכול להיות מורכב מאוסף של גלים הנעים לכיוון מסוים.

בניסוי במעבדה של ד"ר באב"ד The Physical Optics group השתמשו החוקרים ותלמידי המחקר יניב אליעזר, שנמצא כיום בפוסט דוקטורט באוניברסיטת ייל, ותומאס זכריאס, באלומת לייזר אשר פוצלה והורכבה מחדש כאוסף של גלים הנעים כולם בזוית חיובית יחסית לציר שנקבע מראש. אסופת הגלים הזו חושבה מראש כך שתוכל לייצר את תופעת ה״זרימה לאחור״. כעת בהזזת חריץ קטן לרוחב אלומת האור נעשית המדידה המקומית של כיוון זרימת האור. ברוב המיקומים בהם הושם החריץ, האור אשר יצא ממנו המשיך לנוע בכיוון המאופיין עם זוית חיובית, אך במספר מקומות מוגדרים – האור אשר בקע מהחריץ נע בכיוון המאופיין עם זוית שלילית, מאשש בכך את התופעה המדוברת. למחקר זה יכולות להיות השלכות בתחומים הדורשים שליטה מדויקת בפילוג המרחבי של עוצמת אור בנפחים קטנים, כמו מיקרוסקופיה, חישה והנעה של חלקיקים זעירים. 

 

*עוד ניתן לקרוא על המחקר של ד"ר באב"ד במגזין היוקרתי Optica שהתפרסם חודש שעבר - למאמר המלא במגזין Optica

 

*לכתבה המלאה בעיתון הארץ

 

 

   

 

 

 

אוניברסיטת תל-אביב, ת.ד. 39040, תל-אביב 6997801
UI/UX Basch_Interactive