סמינר המחלקה להנדסה ביו רפואית

Towards personalized neuroimaging in neurosurgery: linking brain networks and cognitive function 

06 בדצמבר 2020, 14:00 
ZOOM 
ללא עלות
סמינר המחלקה להנדסה ביו רפואית

Towards personalized neuroimaging in neurosurgery: linking brain networks and cognitive function 

Abstract: The importance of quality of life of patients following neurosurgery for brain tumors has been increasingly recognized in recent years. Emphasizing the balance between oncological and functional outcome, an emerging discipline at the forefront of research and patient care focuses on cognitive function. In current surgical standard practice, focal electrical stimulation on the exposed brain while patients are awake is used for mapping areas critical for motor function as well as language to prevent irreversible damage as a result of tissue removal. However, some cognitive functions are harder to map with standard stimulation alone. In the talk, I will present my work aimed at developing techniques and tools for mapping cognitive function in neurosurgery. I will focus on a particularly challenging aspect of cognition – executive functions – how we set and achieve goals, make plans, and prioritize tasks, which are essential to all aspects of our everyday life. Because of the complex nature of these functions and the distributed neural systems that support them, there are currently no established techniques for their functional mapping in neurosurgery. I will introduce a novel method that I developed for mapping executive function during awake neurosurgery using electrocorticography (ECOG) – recording directly from the surface of the brain – while patients perform cognitive tasks. I will show evidence for the feasibility and utility of this method as a first step towards establishing its foundations. Critical to bridging the translational gap and bringing neuroimaging into use in neurosurgery is our understanding of the functional role of the neural networks associated with cognitive functions and our ability to identify them in individuals. I will therefore present supporting findings for these using functional MRI (fMRI) data in healthy human volunteers. Finally, I will discuss future research directions towards developing multi-modality neuroimaging with advanced data analysis techniques for personalized medicine in neurosurgery. 
 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>