מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
מחקר
בוגרים ובוגרות
הנדסת חשמל
הנדסת סביבה
הנדסת תעשייה
הנדסה מכנית
הנדסה ביו-רפואית
מדע והנדסה של חומרים
פיתוח מכונת הנשמה

מחקר

29.10.2020
קוד לאוויר לנשימה

צוות חוקרים מהפקולטה להנדסה אוניברסיטת תל אביב פיתחו כלי תוכנה, עם קוד פתוח למפתחים שיאפשרו לנבא ביצועים של מכונות הנשמה שמחוברות למטופלים במצבים שונים.

  • מחקר
  • הנדסת חשמל
  • הנדסה מכנית

 

עם פרוץ מגיפת הקורונה התארגנה קבוצה של חוקרים מהפקולטה להנדסה באוניברסיטת תל אביב במטרה לעזור במאמץ המלחמתי. פרופ' אלכס ליברזון מבית הספר להנדסה מכנית וד"ר גדעון שגב מבית הספר להנדסת חשמל מובילים צוות לפיתוח של כלי תוכנה עם קוד פתוח למפתחים שיאפשרו לנבא ביצועים של מכונות הנשמה שמחוברות למטופלים במצבים שונים. מטרת הפרויקט היא לאפשר לקבוצות שמפתחות מכונות הנשמה "ביתיות" לבדוק כיצד המכונה שלהם תעבוד עם חולים ובנוסף לאפשר פיתוח מהיר של מערכות שליטה ובקרה למכונות הנשמה.

 

בקרת זרימת האוויר

כיום מדברים הרבה על ייצור של מכונות הנשמה "פשוטות" או ביתיות. הבעיה העיקרית עם מכונות כאלו היא שאין להן את כל מערכות הבקרה המתוחכמות שיש במכונות ההנשמה הרגילות. לדוגמא, במכונות הנשמה יש מספר חיישנים המאפשרים לשלוט בנפח האוויר שנכנס למטופל בכל נשימה ובלחץ האוויר המינימלי והמקסימלי בריאות שלו. עם זאת, העלות של חיישנים למדידת כמות האוויר שנכנס היא גבוהה וגם קשה להשיג כאלו היום. כתוצאה מכך, במכונות ההנשמה הפשוטות שמציעים לבנות היום, קשה לדעת כמה אוויר המטופל מקבל. "כאן הכלים שאנחנו מפתחים נכנסים. התוכנה שאנחנו פיתחנו מדמה את זרימת האוויר במכונה ובמטופל. היא לוקחת בחשבון פרמטרים כמו המצב הרפואי של המטופל ואת מספר הנשימות שלו בדקה והיא מחשבת את זרימת האוויר והלחץ בכל נקודה במכונה ובריאות של המטופל" מספר ד"ר שגב.

 

מבעיה לפתרון

בעזרת כלי כזה, מפתחים יכולים לתכנן טוב יותר את המערכות שלהם ולהתייחס לבעיות כמו: איך המכונה תעבוד עם מטופלים שונים? כיצד מוודאים שהמכונה מסונכרנת עם הנשימות של המטופל? או האם ניתן להציב חיישנים פשוטים במקומות שונים בשביל להעריך כמה אוויר המטופל מקבל?

 

בשלב הראשון, בנינו תוכנה שמדמה את הפעולה של מערכת המנשמה. מערכת הנמצאת בפיתוח ע"י צוות הכולל מהנדס מערכת, רופא, מהנדס חשמל, מתכנת ומתנדבים נוספים שעוזרים בכל הנדרש: מרדכי חלפון, ד"ר אלעד גרוזובסקי, רונן זילברמן, גיל בכר, עברי שפירא, רועי דרנל, סתיו בר-ששת. המנשמה מיועדת להקל על חולים מונשמים שאינם מורדמים. "יחד עם צוות הפיתוח של המנשמה, ערכנו סידרה של ניסויים שאפשרו לנו לכייל את החישובים שלנו ועל ידי כך לאפשר לתוכנה לנבא כיצד המכונה תעבוד עם מטופלים במצבים שונים. השלב הבא יהיה להתאים את החישובים למערכות שמבוססות על מנשם מסוג אמבו (מין בלון שלוחצים עליו כדי להכניס אוויר לריאות). יש הרבה מאוד אנשים בעולם שעובדים על מכונות מהסוג הזה כך שאנחנו חושבים שתוכנה כזו תוכל לעזור להם בצורה משמעותית" מסביר ד"ר שגב

 

על ה Software

התוכנה שלנו מבוססת על כלי תוכנה סטנדרטיים לתכנון מערכות לזרימת אוויר. היא פותרת את משוואות הזרימה בהינתן המצב של המטופל והפרמטרים של בקרת הנשימה שאנחנו בוחרים. התוצאה של החישוב היא איך הלחץ וזרימת האוויר משתנה  בריאות (או בכל נקודה אחרת במערכת) עם הזמן. ערכנו ניסויים עם ריאה מלאכותית והשווינו את תוצאות הניסוי לחישובים במצבים שונים. היה מאוד יפה לראות שאחת שמכוונים את החישוב, הוא מסוגל לתאר את ביצועי המערכת במגוון רחב של מצבים. מאחר ואנחנו עוסקים רק בחישובי הזרימה, החישוב לא מסוגל לתת מידע על התפתחות המחלה עצמה. עם זאת, חישובים כאלו יאפשרו למפתחים לכוון את מערכות ההנשמה שלהם כך שייצרו את הפרמטרים האופטימאליים עבור כל מטופל ועל ידי כך לשפר את המצב שלו.

 

"מספר המונשמים בארץ הוא די נמוך בהשוואה למדינות רבות בעולם. על כן, לשמחתנו, נראה שלא יהיה בארץ צורך במכונות הנשמה פשוטות. עם זאת, זה ממש לא המצב במקומות רבים בעולם. יש מדינות רבות בעולם השלישי שבכל המדינה יש פחות מעשר מכונות הנשמה. במדינות כאלו יש חוסר קיצוני במכונות הנשמה גם בימים שבשגרה ועל אחת כמה וכמה עכשיו עם התפרצות מגפת הקורונה. אנחנו מקווים שהפעילות שלנו תוכל לעזור במשהו בכל המקומות האלו" מסכם ד"ר שגב

 

לינק קישור לתוכנהhttps://osf.io/befqm/

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

עדשה

מחקר

12.10.2020
לעקם את משולש החשיפה

מאמרו של הדוקטורנט שי אלמלם, התפרסם השבוע בכתב העת היוקרתי ""Optica של ה-OSA בנושא: "תיקון טשטוש הנובע מתנועה באמצעות קידוד מפתח מרחבי-זמני".

  • מחקר
  • הנדסת חשמל

הדוקטורנט שי אלמלם, בהנחיה משותפת של פרופ' עמנואל מרום ז"ל וד"ר רג'א ג'יריס, מבית הספר להנדסת חשמל של הפקולטה להנדסה באוניברסיטת תל אביב , פרסמו השבוע מאמר בכתב העת היוקרתי ""Optica של ה-OSA בנושא: "תיקון טשטוש הנובע מתנועה באמצעות קידוד מפתח מרחבי-זמני".

 

האתגר הגדול

בשנים האחרונות השימוש במצלמות נהיה חלק אינטגרלי מחיי היום-יום וניתן למצוא אותן משולבות בטלפונים ניידים, מחשבים, מערכות אבטחה וכו׳. ישנה הערכה הגורסת כי בעולם יש כיום יותר מצלמות מבני-אדם. כדי לצלם תמונה טובה, דרוש כי עוצמת אור גדולה תגיע לחיישן. כדי להגדיל את עוצמת האור ניתן להגדיל את מפתח העדשה, אך המחיר של הגדלה זו הוא הקטנה של עומק השדה, וכתוצאה מכך טשטוש של עצמים שאינם במישור המוקד (שאינם ב'פוקוס'). פתרון אפשרי אחר הוא להגביר (אלקטרונית) את האות שהגיע לחיישן, אך הגברה זו תוסיף רעש ויזואלי לתמונה. האפשרות השלישית היא להגדיל את זמן הצילום (מכונה גם זמן החשיפה), וכך יגיע יותר אור לחיישן. מאידך, בזמן חשיפה ארוך ייתכן שתתרחש תנועה, בין אם של העצמים אותם אנחנו מצלמים (תמונה 1) ובין אם של המצלמה עצמה (תמונה 2), מה שיגרום למריחה ולירידה באיכות התמונה.  

תמונה 1: מריחה כתוצאה מתנועה של העצם המצולם תוך כדי החשיפה 

 

תמונה 2: מריחה כתוצאה מתנועה של המצלמה תוך כדי החשיפה

 

המפתח הוא באיזון

כדי לצלם תמונה איכותית נדרש לאזן את 'משולש החשיפה' (מפתח, זמן חשיפה והגבר), ואיזון זה הינו אתגר יסודי בצילום. השימוש הרווח במצלמות בימינו מכתיב דרישות מורכבות על התכנון שלהן, כיוון שמצלמות נדרשות להשיג ביצועים מצוינים מחד, ומאידך להיות קטנות וזולות ככל שניתן. בשיטות התכנון המקובלות, דרישות אלו הן דרישות סותרות.

 

פיצוי על הטשטוש

כדי להשיג ביצועי צילום טובים במצלמות קטנות וזולות, ניתן לעקוף את אילוצי משולש החשיפה ע״י צילום תמונות בצורה לא קונבנציונלית, ולאחר מכן ביצוע תיקון בתהליך עיבוד תמונה מתקדם. במאמר שפורסם לאחרונה בכתב העת Optica, שיטת תכנון כזו הודגמה כדי לפצות על טשטוש כתוצאה מתנועה, ע"י קידוד מרחבי-זמני של המריחה בצבעים שונים.

 

במסגרת המחקר בקבוצה, פותחה שיטת תכנון למצלמה הכוללת תכנון משולב של האופטיקה ושל אלגוריתם עיבוד התמונה בתהליך יחיד, מקצה לקצה (End-to-End), ע"י שימוש בכלים של למידה עמוקה (Deep Learning). בשיטה זו, המערכת נבחנת כיחידה אחת, וכלל דרגות החופש (פיזיות- באופטיקה, ודיגיטליות- באלגוריתם העיבוד) מנוצלות בתהליך התכנון כדי להשיג את המטרה הרצויה. שיטה זו הודגמה במאמרים קודמים לפיתוח מצלמת All-in-focus וכן למצלמה שמאפשרת מדידת מרחק מתמונה בודדת (עבודה זו זכתה ב-2018 במקום הראשון בתחרות סטודנטים של ה-OSA שכותרתה הייתה “The Optical System of the Future”).

 

במסגרת המחקר הנוכחי, בוצע תהליך תכנון משולב של העדשה ותהליך רכישת התמונה, והן של תהליך עיבוד התמונה הגולמית, במטרה לבצע תיקון לטשטוש כתוצאה מתנועה. מטרת התכנון היא 'לשתול' בתמונה הגולמית רמזים לנתוני התנועה, מה שיאפשר לבצע בתהליך עיבוד התמונה תיקון של המריחה שנוצרה כתוצאה מהתנועה. הרמזים נשתלים ע"י שני רכיבים אופטיים: לוחית שקופה שמשולבת בעדשה רגילה, ועדשת מיקוד (פוקוס) אלקטרונית. הלוחית מכילה מבנה מיקרומטרי שמתוכנן לייצר תלות בין צבע למיקוד. עדשת המיקוד מתוזמנת כך שתבצע שינוי מיקוד הדרגתי תוך כדי הצילום, וכתוצאה מכך המריחה של עצמים נעים נצבעת בצבעים שונים לאורך התנועה (תמונות 3,4). קידוד הצבעים נותן הכוונה חזקה לאלגוריתם העיבוד על כיוון ומהירות התנועה, מה שמאפשר תיקון של המריחה ושחזור תמונה חדה. השיטה הודגמה באמצעות אבטיפוס שמבוסס על מצלמה מסחרית, ששולבו בה לוחית הפאזה ועדשת המיקוד האלקטרונית. המערכת השיגה שיפור משמועתי בביצועי הצילום יחסית לשיטות קיימות שמתבססות על עיבוד תמונה בלבד (תמונה 5), והן ביחס לשיטות אחרות שמבצעות שינוי באופטיקה בשילוב עם עיבוד מותאם.

תמונה 3: תרשים זרימה של התהליך (התמונה מתוך המאמר)

 

תמונה 4: הדגמה לקידוד תנועה-צבע: צילום של נורית לבנה בתנועה עם המצלמה שפותחה. הקידוד משתנה תוך כדי החשיפה, כך שהנורה הלבנה נקלטת בצבעים שונים לאורך התנועה שלה, וסדר הצבעים והמרחק ביניהם נותן אינדיקציה לכיוון ומהירות התנועה (התמונה מתוך המאמר).

 

תמונה 5: צילומים של תמונה שמסתובבת תוך כדי החשיפה והשוואת ביצועים: משמאל: תוצאת המצלמה שלנו. מימין: צילום במצלמה רגילה וניסיון שחזור של הטשטוש עם אלגוריתם מבוסס למידה עמוקה (התמונה מתוך המאמר).

 

מאחורי העדשה

כאמור, המחקר בוצע ע"י הדוקטורנט שי אלמלם, בהנחיה משותפת של פרופ' עמנואל מרום ז"ל וד"ר רג'א ג'יריס. בצער רב, פרופ' מרום נפטר במהלך העבודה, והמאמר שפורסם מוקדש לזכרו. פרופ' מרום היה ממקימי הפקולטה להנדסה, שימש כדקאן הפקולטה בשנים 1980-1983, ובתפקידו האחרון היה סגן נשיא האוניברסיטה בשנים 1992-1997. לאחר פרישתו המשיך לעסוק במחקר פעיל ולהנחות סטודנטים לתארים מתקדמים, עד יומו האחרון.

 

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 

 

 

 

קובייה מתכתית

מחקר

22.07.2020
המהוד האופטי הקטן בעולם לקרינה אינפרא-אדומה

ד"ר איתי אפשטיין, יחד עם חוקרים מספרד, ארה"ב, פורטוגל וצרפת, הצליחו לבנות מהוד אופטי אשר מסוגל לדחוס קרינה אינפרא-אדומה לחלל הקטן פי מיליארד מנפחה הרגיל

  • מחקר
  • הנדסת חשמל

בדומה להקטנת גודלם של מעגלים אלקטרוניים, המאפשרים טכנולוגיות כמו מחשבים וסמארטפונים, השאיפה ליצור טכנולוגיה עתידית המבוססת על מעגלים ושבבים אופטיים מונעת גם היא ע"י הצורך במזעור. יחד עם זאת, מזעור זה כרוך באתגרים ובמכשולים חדשים שיש להתגבר עליהם, כמו שליטה והולכה של אור בסקלת הננומטר. לאור זאת, טכניקות חדשות מפותחות כל הזמן אשר מטרתן לדחוס את האור לחללים זעירים במיוחד - קטנים פי מיליונים מאורך הגל של האור ומתחת לגבול הדיפרקציה, שמסמל את הגודל או הנפח הקטן ביותר אליו ניתן לדחוס גלי אור. דבר זה קשה במיוחד בתחום הספקטראלי של קרינה אינפרא-אדומה, מכיוון שהיא מאופיינת ע"י אורכי גל גדולים, בסקלות של עשרות עד מאות מיקרומטרים.

 

גלים פלזמונים בגרפן

גרפן - חומר דו-ממדי הבנוי משכבה אחת של אטומי פחמן - משלב תכונות אופטיות וחשמליות יוצאות דופן. גרפן מסוגל להנחות אור בצורה של "גלים פלזמונים", שהם תנודות של אלקטרונים המצומדות לשדה האלקטרומגנטי של האור. לפלזמונים (יחידת אנרגיה של תנודות בפלזמה) אלו יכולת טבעית לדחוס אור לחללים קטנים מאוד. עם זאת, עד עכשיו ניתן היה ​​לדחוס את הפלזמונים הללו בצורה המוגבלת לסקלות מיקרומטריות, בעוד שיכולתו של האור לבצע אינטראקציה עם חלקיקים קטנים, כמו אטומים ומולקולות, תלויה ביכולת לדחוס אותו לחללים בסקלות הרבה יותר קטנות. סוג זה של דחיסה נחשב בדרך כלל למהוד אופטי.

 

סוג חדש של מהוד אופטי

כעת, במחקר שהוביל ד"ר איתי אפשטיין, איש סגל חדש במחלקה לאלקטרוניקה פיסיקלית בבית הספר להנדסת חשמל בפקולטה להנדסה, אשר בוצע כחלק מעבודת הפוסט-דוקטורט שלו יחד עם חוקרים נוספים מספרד, פורטוגל, צרפת, ברזיל וארה"ב, הצליחו החוקרים לבנות סוג חדש של מהוד אופטי. המהוד, שמבוסס על שילוב של קוביות מתכת בגודל ננומטרי המפוזרות על גבי הגרפן, איפשר לייצר את המהוד האופטי הקטן ביותר שנבנה עד כה לקרינה אינפרא-אדומה, ואשר מבוסס על הפלזמונים בגרפן.

 

בניסוי, החוקרים השתמשו בקוביות מתכתיות בגודל 50 ננומטר בלבד, אשר מפוזרות באופן אקראי על שכבת הגרפן ללא דפוס או כיוון ספציפי. זה איפשר לכל קוביה, ביחד עם הגרפן, לפעול כמהוד אופטי בודד. לאחר מכן הם העבירו אור אינפרא-אדום דרך הדגם ומדדו כיצד הפלזמונים נדחסים לנפח קטן מאוד בין הגרפן והקוביות.

 

מבעיה לפתרון

ד"ר אפשטיין מציין כי "המכשול העיקרי בו נתקלנו בניסוי זה הוא העובדה שאורך הגל של אור אינפרא-אדום גדול מאוד והקוביות קטנות מאוד - בערך פי 200 - כך שקשה מאוד לגרום להם לבצע אינטראקציה זה עם זה". כדי להתגבר על הבעיה הם ניצלו תופעה מיוחדת - כאשר הפלזמונים נדחסו אל המהוד הם יצרו אופן תהודה הנקרא אופן תהודה מגנטי. ד"ר אפשטיין מבהיר: "תכונה ייחודית של אופן תהודה מגנטי מסוג זה היא היכולת לפעול כסוג של אנטנה המגשרת על ההבדל בין הממדים הננומטריים של הקוביה לבין המימדים הגדולים של האור האינפרא-אדום". לפיכך, אופן התהודה איפשר לדחוס את הפלזמונים לנפח הקטן פי מיליארד מהנפח של אור אינפרא-אדום רגיל, דבר שמעולם לא הושג לפני כן. בנוסף, החוקרים גילו שהמהוד משמש גם כסוג חדש של אנטנה ננומטרית שיכולה לפזר אור אינפרא-אדום ביעילות רבה.

 

תוצאות מחקר מבטיחות

לרוב החומרים המולקולריים קיימים מעברים אנרגטיים בספטרום האינפרא-אדום, ומכוון שגישה זו, של דחיסת האור לחללים מאד קטנים, מסוגלת לחזק את השדה האופטי בצורה ניכרת, ניתן להשתמש בה כדי לאתר חומרים מולקולריים, המגיבים לאור אינפרא-אדום. מבחינה זו תוצאות המחקר מבטיחות בתחום של גלאים חדשים לחישה מולקולרית וביולוגית, רפואה, ביוטכנולוגיה, בדיקת מזון ואפילו ביטחון. גלאים אלו יעזרו לאתר חומרים מולקולריים רעילים או מסוכנים, הנמצאים במזון או בציוד הנ"ל.

 

העבודה בוצעה כחלק מעבודת הפוסט-דוקטורט של ד"ר אפשטיין, במכון המחקר ICFO – The Institute of Photonic Sciences, בברצלונה, ספרד, והתפרסמה בירחון המדעי Science.

 

את המאמר המלא ניתן למצוא כאן.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 ״זרימה לאחור״ של אור הנע קדימה

מחקר

12.03.2020
״זרימה לאחור״ של אור הנע קדימה

ד"ר אלון באב"ד, יחד עם תלמידי המחקר שלו הצליחו להדגים לראשונה את התופעה "זרימה לאחור" המבוססת על רעיון שעלה לפני כחמישים שנה במסגרת המכניקה הקוונטית אך לא הודגם מעולם בשום ניסוי

  • מחקר
  • הנדסת חשמל

דמיינו כדור הנזרק קדימה בחלל חופשי. בכל רגע ורגע לאחר הזריקה, אם נמדוד את כיוון התנועה של הכדור הוא ימשיך לנוע קדימה. התוצאה הברורה הזו, כלל וכלל איננה מחויבת המציאות כאשר מדובר בתנועה של חלקיקים מיקרוסקופיים אשר תנועתם מצייתת לחוקים המוזרים של המכניקה הקוונטית. לפי תורה זו חלקיק יכול להתנהג גם כגל.

 

מאחר שגלים שונים יכולים להתחבר ביחד בתהליך הנקרא התאבכות, גם חלקיק הנע קדימה יכול להיות מורכב מאוסף של גלים אשר נעים כולם קדימה. ההשלכות של התאבכות זו יכולות להיות  מוזרות ולא אינטואיטיביות. עם בחירה נכונה של משרעות הגלים (עד כמה חזק הם מתנדנדים) והשהיה יחסית ביניהם ניתן ליצור חלקיק אשר למרות שהוא מורכב מגלים שכולם נעים קדימה, אם התנועה שלו תמדד במקומות מסוימים במרחב ובזמנים מסוימים – יתגלה שהחלקיק נע אחורה. בשאר המקומות והזמנים – אם תנועת החלקיק תימדד הוא ימצא כנע קדימה. למעשה הסיכוי למצוא את החלקיק נע קדימה הוא עדיין גדול בהרבה מהסיכוי למצוא אותו נע אחורה. כמו כן ההתאבכות המייצרת את אותה ״זרימה לאחור״ היא מאוד עדינה – שינוי קטן במשרעת של הגלים או בהשהיה היחסית שלהם תהרוס בקלות את תופעת ״הזרימה לאחור״. מאחר שהתופעה הזו כה רגישה, עד היום לא הצליחו להבחין בה בשום מעבדה בעולם.

 

במעבדתו של ד״ר אלון באב״ד מבית הספר להנדסת חשמל באוניברסיטת תל אביב הצליחו כעת להדגים את התופעה עם אור. הרעיון הבסיסי במרכז המחקר הוא שגם אור הוא תופעה גלית, וכמו החלקיק קוונטי, יכול להיות מורכב מאוסף של גלים הנעים לכיוון מסוים.

בניסוי במעבדה של ד"ר באב"ד The Physical Optics group השתמשו החוקרים ותלמידי המחקר יניב אליעזר, שנמצא כיום בפוסט דוקטורט באוניברסיטת ייל, ותומאס זכריאס, באלומת לייזר אשר פוצלה והורכבה מחדש כאוסף של גלים הנעים כולם בזוית חיובית יחסית לציר שנקבע מראש. אסופת הגלים הזו חושבה מראש כך שתוכל לייצר את תופעת ה״זרימה לאחור״. כעת בהזזת חריץ קטן לרוחב אלומת האור נעשית המדידה המקומית של כיוון זרימת האור. ברוב המיקומים בהם הושם החריץ, האור אשר יצא ממנו המשיך לנוע בכיוון המאופיין עם זוית חיובית, אך במספר מקומות מוגדרים – האור אשר בקע מהחריץ נע בכיוון המאופיין עם זוית שלילית, מאשש בכך את התופעה המדוברת. למחקר זה יכולות להיות השלכות בתחומים הדורשים שליטה מדויקת בפילוג המרחבי של עוצמת אור בנפחים קטנים, כמו מיקרוסקופיה, חישה והנעה של חלקיקים זעירים. 

 

*עוד ניתן לקרוא על המחקר של ד"ר באב"ד במגזין היוקרתי Optica שהתפרסם חודש שעבר - למאמר המלא במגזין Optica

 

*לכתבה המלאה בעיתון הארץ

 

 

   

 

 

 

דימות וגילוי מרחוק ע"י גלי טרה-הרץ

מחקר

12.05.2019
דימות וגילוי מרחוק ע"י גלי טרה-הרץ יאפשרו זיהוי של חומרי נפץ, תרופות

פרופ' טל אלנבוגן יחד עם סטודנטים מקבוצת המחקר שלו פיתחו טכנולוגיה חדשה ליצירה ושליטה בקרינת טרה-הרץ בעזרת מטא-חומרים

  • מחקר
  • הנדסת חשמל

החודש התפרסם מאמר פורץ דרך של פרופ' טל אלנבוגן, מהמחלקה לאלקטרוניקה פיזיקלית בבית הספר להנדסת חשמל וראש המעבדה לננו אלקטרואופטיקה, יחד עם חוקרים נוספים מאוניברסיטת תל אביב ואוניברסיטת בראון בארה"ב, בתחום של יצירה ושליטה בקרינת טרה-הרץ בעזרת מטא-חומרים בעיתון היוקרתי  Nature Communications.

 

גלי טרה-הרץ

גל אלקטרומגנטי הוא למעשה "הפרעה" של שדה חשמלי ומגנטי בעלת מחזוריות ומבנה גלי המתפשטת במרחב במהירות האור. גלים אלקטרומגנטיים, כמו גלי רדיו, מגיעים בתחום רחב של תדירויות המכונה הספקטרום האלקטרומגנטי (כלומר אוסף כל הגלים האלקטרומגנטיים). ספקטרום זה משתרע מגלי הרדיו בעלי תדירויות נמוכות ועד לגלי גאמה (קרינה בתדירות גבוהה מזו של X-ray). האור הנראה, התדירויות אותן בני האדם יכולים לראות, הוא רק חלק קטן מכל התחום של גלים אלקטרומגנטיים. 

 

כיום קיימים אמצעים מדעיים וטכנולוגיים כגון אנטנות, מנורות, לייזרים וגלאים המאפשרים להפיק ולקלוט גלים על פני כמעט כל תחומי הספקטרום האלקטרומגנטי. אמצעים אלו מאפשרים אינספור של ישומים כמעט בכל תחומי המדע והטכנולוגיה הקיימים מתקשורת, דימות, זיהוי עצמים עד לאבחון רפואי. לעומת זאת תחום גלי הטרה-הרץ, המתנדנדים בתדירויות הנמצאות בין גלי מיקרו לאור האינפרא אדום, נותר באפלה. הסיבה היא מכיוון שתדירויות אלו מהירות מידי ליצירה וקליטה בעזרת מעגלים חשמליים ובעלות אנרגיות נמוכות מידי ליצירה וקליטה באמצעים המשמשים ליצירה וקליטה של אור. אמנם קיימים מספר אמצעים ליצירה ולקליטה של קרינת טרה-הרץ, אך אלו מוגבלים ביכולת השליטה בתדירויות ובעוצמות שלהם, או מצריכים תנאי הפעלה קיצוניים כגון טמפרטורות נמוכות מאוד. בנוסף, קיימים רק כלים מעטים לעיצוב קרני טרה-הרץ כמו עדשות או מקטבים. למרות הקושי בעבודה עם קרינת טרה-הרץ, מאמצים רבים מושקעים בפיתוח רכיבים יעילים לתחום תדירויות זה עקב מגוון של שימושים חשובים של קרינת טרה-הרץ. מערכות המשתמשות בקרינת טרה-הרץ יפתחו את הדלת לזיהוי ואף שליטה במולקולות, זיהוי של תרופות אמת או תרופות מזויפות, דימות רפואי בקרינה שאינה מייננת, גילוי חומרי נפץ, חומרי ריסוס, יצירת תקשורת נתונים מהירה ועוד מגוון רחב של יישומים חשובים.

 

יצירה עיצוב ושליטה בקרני טרה-הרץ על ידי מטא-משטחים אופטיים

מחקר חדש שבוצע על ידי הסטודנטים שי קרן צור ומאי טל מהקבוצה של פרופ' טל אלנבוגן מבית הספר להנדסת חשמל, בשיתוף פעולה עם ד"ר שר-לי פליישר מבית ספר לכימיה באוניברסיטת תל אביב ופרופ' דניאל מיטלמן מאוניברסיטת בראון שבארה"ב, מראה כיצד ניתן להשתמש במשטחים דקים (בעובי עשרות ננומטרים) המכונים מטא-משטחים אופטיים, ליצירה יעילה של קרינה בתחום הטרה-הרץ ולעיצוב ושליטה בקרינה.

 

המשטחים בנויים מאלמנטים בסקאלה ננומטרית, שיוצרו במרכז הננו של אוניברסיטת תל אביב. כל אלמנט כזה משמש כננואנטנה הקולטת אור מלייזר בתחום האיפרא-אדום בעל פולסים קצרים באורך של פמטו-שניות ומייצרת ביעילות יחסית פולסים של קרינת טרה-הרץ. על ידי שליטה באנטנות על גבי המטא-משטח החוקרים מראים שניתן לעצב את צורתו המרחבית והזמנית של פולס הטרה-הרץ שנוצר בצורה שלא ניתנת להשגה באמצעים הקיימים עד כה. היכולת הזו פותחת פתח למגוון רחב של יישומים חדשים לקרינת טרה-הרץ.

 

החוקרים מאמינים שבעתיד יהיה ניתן לשלב מקורות חדשים כאלו במערכות גילוי ואפיון חומרים, רכיבים, תרופות ובמערכות דימות טרה-הרץ רפואיים.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

מחקר חדש על זיהוי עצמים משנה עקרונות ותיקים של טכנולוגיות רדאר

מחקר

29.04.2019
מחקר חדש על זיהוי עצמים משנה עקרונות ותיקים של טכנולוגיות רדאר

ד"ר פבל גינזבורג, מהפקולטה להנדסה, פיתח יחד עם חוקרים מאוניברסיטת תל אביב סוג חדש של מכ"ם שמסוגל להבחין בין עצמים ברזולוציה גבוהה ביותר גם כשהוא פועל ברוחב פס קטן פי 100 מזה הנדרש בטכנולוגיות הקיימות

  • מחקר
  • הנדסת חשמל

טכנולוגיות רדאר עוצבו במקור בכדי לזהות ולעקוב אחרי מטרות אוויריות צבאיות. היום הן משמשות לרוב בזיהוי רכבים, חיזוי מזג אוויר ומחקר גיאולוגי. עד עתה, מדענים האמינו כי דיוק ורזולוציית הרדאר קשורות לטווח התדרים או רוחב הפס. כעת מחקר חדש בפקולטה להנדסה של אוניברסיטת תל אביב מגלה כי גישה בהשראת טומוגרפיה אופטית קוהרנטית (OCT) דורשת רוחב פס קטן עד ככל לא, על מנת ליצור מפה סובבת רדאר ברזולוציה גבוהה.

 

"הצלחנו להדגים סוג שונה של מערכת טווחים בעלת טווח רזולוציה איכותי אשר חופשיה כמעט לחלוטין ממגבלות רוחב הפס", אומר פרופ' פבל גינזבורג. "לטכנולוגיה החדשה יש שלל שימושים, בעיקר בכל הקשור לתעשיית הרכב. יש לציין כי האמצעים הקיימים תומכים בגישה החדשה שלנו, כך שניתן ליישם אותה באופן כמעט מיידי".

 

המחקר החדש בוצע במשותף ע"י פרופ' גינזבורג, ויטלי קוזלוב ממעבדתו של פרופ' גינזבורג, רוני קומיסרוב ודמיטרי פילונוב, מביה"ס לחשמל בפקולטה להנדסה. המאמר פורסם בכתב העת   Nature Communications ונתמך על ידי מלגת ERC קמין.

 

למנוע את פקקי התנועה של העתיד

האמונה הרווחת בנוגע לרזולוציית הרדאר הייתה כי האיכות עולה בהתאמה לרוחב הפס בו נעשה השימוש. כלומר, רדאר טוב ומדויק דורש רוחב פס גדול, דבר שעלול להוות מגבלה בעתיד. "התפיסה שלנו מציעה פתרונות במצבים שמצריכים רזולוציה גבוהה ודיוק, אך רוחב הפס האפשרי מוגבל, כמו למשל בתעשיית הרכבים האוטונומיים, עיבוד תמונה ואסטרונומיה", מסביר קוזלוב. "אין רכבים רבים היום על הכביש שבהם יש רדאר, כך שאין כמעט תחרות על התדרים המוצעים. אבל מה יקרה בעתיד, כאשר כל רכב יהיה מצויד בטכנולוגיית רדאר שדורשת את מלוא רוחב הפס? אנחנו נמצא את עצמנו בסוג של פקק תנועה ברדיו. הפתרונות שלנו מאפשרים לנהגים לחלוק את רוחב הפס הקיים ללא בעיה".

 

שימוש ברדאר לצורך הצלה

"ההדגמה שלנו היא רק השלב הראשון בסדרה של גישות חדשות לגלאי טווח-רדיו שחוקרים את ההשפעה של רדארים בעלי רוחב פס קטן בתחומים מסורתיים", מסכם פרופ' גינזבורג. "אנו מתכוונים ליישם את הטכנולוגיה הזו על תחומים שלא נחקרו בעבר, כמו מבצעי חילוץ והצלה – על ידי גילוי אדם שקבור מתחת לבניין שהתמוטט, או מיפוי הרחוב כדי לנבא אם ילד עומד לחצות את הכביש מאחורי אוטובוס שמסתיר אותו".

 

מעבר למאמר

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

ד״ר רג׳א ג׳יריס חוקר למידה עמוקה של מחשבים, כיצד הם לומדים ואיך זה יכול לשמש אותנו.

מחקר

18.12.2018
בכל תמונה מטושטשת יש תמונה חדה שרוצה להתגלות

ד״ר רג׳א ג׳יריס חוקר למידה עמוקה של מחשבים, כיצד הם לומדים ואיך זה יכול לשמש אותנו.​

  • מחקר
  • הנדסת חשמל

בשנים האחרונות חלה התקדמות מאוד גדולה בתחום של למידה עמוקה, שהוא תת תחום של למידת מכונה (הידועה גם כאינטליגנציה מלאכותית בפי הקהל הרחב) שבו מנסים לגרום למחשב ללמוד לבד

 

ההתקדמות הזאת הובילה לשיפור אדיר בביצועים בתחומים כמו זיהוי אובייקטים, הבנת שפה, הבנת דיבור, שיפור איכות תמונה, נהיגה אוטונומית, רפואה (זיהוי גידולים מסריקות בצורה אוטומאטית) ועוד.

 

אחד הדברים שמעיבים על ההצלחה הגדולה של התחום הוא שאנחנו לא מבינים למה הכלים של למידה עמוקה הם כל כך חזקים. כלומר למה הם מצליחים לעשות דברים שכלים אחרים נכשלו בהם. כלומר איננו מבינים מה כל כך מיוחד בהם או מה נותן להם את היכולות שיש להםהבנה תיאורטית של כלים אלו מאוד חשובה בעיקר כאשר רוצים להשתמש בהם ביישומים רגישים כמו רפואה או נהיגה. 

 

המחקר של ד"ר גיריס, מבית הספר להנדסת חשמל של הפקולטה להנדסה אוניברסיטת תל-אביב מתבסס על תיאוריה אבל גם על שיפור תמונה ותכנון אופטיקה חדשה ולנסות לגרום למכונה להוציא מידע שאנחנו לא רואים. הוא וחוקריו מנסים לתת הבנה טובה יותר של הכלים הללו ובעזרת ההבנה הזאת לפתח כלים חדשים שמשיגים ביצועים טובים יותר.

 

עוד על ד"ר גיריס ומחקרו ניתן למצוא באתר שלו

 

 

עדשות דקות פחות מעובי של שערה

מחקר

18.09.2017
מחקר פורץ דרך: עדשות דקות פחות מעובי של שערה
  • מחקר
  • הנדסת חשמל

אלמנטים אופטים משטחיים

מחקר פורץ דרך שפורסמם בעיתון היוקרתי – Nature Communications בנושא אלמנטים אופטים משטחיים של ד"ר טל אלנבוגן מהמחלקה לאלקטרוניקה פיזיקלית בבית הספר להנדסת חשמל בפקולטה להנדסה ע"ש פליישמן ואורי אביו סטודנט לתואר שני בבית הספר להנדסת חשמל.

 

לצלם עם עדשות דקות פחות מעובי של שערה.

עדשות קמורות הן אבן הבסיס בכל מכשיר אופטי כמו מצלמות, מיקרוסקופים, טלסקופים וכו'. בד"כ נדרשות מספר רב של עדשות כאלה על מנת לקבל תמונה באיכות גבוהה. אחת הסיבות לכך היא שכאשר  אנו רוצים לדמות (image) תמונה לא מונוכרומטית, כמו למשל בצילום באור יום, אורכי הגל השונים המרכיבים את האור הלבן ייתמקדו למקומות מעט שונים ונקבל תמונה מעוותת. תופעה זו, הקרוייה אברציות כרומטיות chromatic aberration)), מסבכת (ולכן גם מייקרת) את התכנון של מכשירים אופטים, ובנוסף גם מגבילה את העובי המינימלי של המכשיר, כמו למשל בטלפונים חכמים. בעיה זו יוצרת דרישה הולכת וגוברת למציאת תחליפים דקים יותר לעדשות אלה, תוך כדי שמירה על איכות מיקוד האור ועלות ייצור נמוכה.

שלוש עדשות לצבע לבצע אחר

בעבודה שפורסמה בעיתון היוקרתי Nature Communications, הראו אורי אביו וד"ר טל אלנבוגן מהמעבדה לננו אלקטרו-אופטיקה באוניברסיטת תל אביב בשיתוף עם ד"ר אוקלידס אלמידה ופרופ' יחיעם פריאור ממכון וויצמן, כיצד ניתן להשתמש בשלוש שכבות אולטרא-דקות של מטה-משטחים, על מנת לייצר עדשה מתוקנת אברציות כרומטיות. בעדשה זו, השתמשו החוקרים בננוטכנולוגיה על מנת לכתוב מערכים של ננו אנטנות העשוית ממתכות שונות, המגיבות לאור הנראה בצורה ייחודית. באמצעות שילוב של שלוש שכבות של מטה- משטחים אלה הצליחו החוקרים להרכיב שלוש עדשות שונות, אשר כל אחת מיועדת לצבע אחר, וביחד ממקדות אור לבן לנקודה אחת, וכל זאת במבנה בעובי של פחות ממאית עובי השערה. בנוסף הראו החוקרים מגוון של רכיבים אופטיים נוספים מבוססים על הטכנולוגיה החדשה. רכיבים אופטיים כאלו מהווים מוקד התעניינות בתעשייה לצורך פיתוחי מצלמות ואלמנטים אופטיים ממוזערים.

לכתבה המלאה: Composite functional metasurfaces for multispectral achromatic optics

הפרדה וחיבור של אלומות אור מעורבלות

מחקר

13.09.2017
הפרדה וחיבור של אלומות אור מעורבלות

עבודת הדוקטורט של שלומי ליטמן, מבית הספר להנדסת חשמל, פורסמה בעיתון היוקרתי Optica

 

  • מחקר
  • הנדסת חשמל

החודש פורסמה עבודת המחקר של שלומי ליטמן, סטודנט לדוקטורט בהנדסת חשמלבהנחייתם של פרופ' עדי אריה מאוניברסיטת תל אביב וד"ר רז גבישי מממ"ג שורק ובשיתוף עם ד"ר גלעד הורביץ, בעיתון המדעי היוקרתי OPTICA

 

שלומי, מהו הנושא המרכזי בעבודה שחקרתם?

"הטכנולוגיה שועטת לכיון שימוש באור ליישומים שונים. למשל העברת מידע ע"י אור. שימוש באור מעורבל מאפשר בין היתר להגביר את קצב המידע בכמה מונים. בעבודה זו פותחו רכיבים אופטיים מתוחכמים וממוזערים פי 100 מהקיים היום, אשר מפרידים את האור המעורבל לפי מידת  העירבול שלו (מספר העירבולים במרחק של אורך גל). הרכיבים שתוכננו על ידינו מאופיינים בצורות תלת ממד מורכבות. מה שמקשה מאד על ייצורם. בכדי להתגבר על אתגר זה , נעזרנו בהדפסה תלת ממדית לייצורם".

 

על הפרדה וחיבור של אלומות אור מעורבלות

כאשר מערבבים בתנועה סיבובית באמצעות כפית מים בכוס, נוצרת מערבולת של גלי המים. תופעה דומה קיימת גם בגלים אחרים ובפרט בגלי אור, היות והגל חוזר לצורתו המקורית לאחר התקדמות של אורך גל אחד, מספר הסיבובים של המערבולת בכל אורך גל חייב להיות מספר שלם. גל אור מעורבל נושא תנע זויתי, וניתן להשתמש בו להנעה ולסיבוב של חלקיקים קטנים. אפשר להשתמש בגלים אלה לתקשורת אופטית בקצב גבוה, כך שגלים בעלי תנע זוויתי שונה ינועו על אותו מסלול, וכל אחד מהם ישמש להעברת מידע.

 

שימושים אחרים של גלי אור

שימושים אחרים של גלים אלה הם בתחום ההצפנה הקוונטית ובתחום האסטרונומיה. כיוון שלאלומות אור מעורבלות יש ערכים קוונטים של מומנט תני זוויתי, ניתן  להיעזר בכך כדי להעביר מידע מוצפן, כאשר הערכים הקוונטים ידועים למצפין. היות והמידע נישא על ידי פוטון בודד, אם אדם כלשהו ירצה להאזין או "לגנוב מידע", הוא ישמיד בכך את המידע המשודר וההאזנה תתגלה.

 

לחבר או להפריד אלומות מעורבלות בצורה יעילה

על מנת לחבר או להפריד אלומות מעורבלות בצורה יעילה, יש צורך בזוג רכיבים אופטיים אשר מעצבים באופן מרחבי את האור העובר דרכם, כך שאלומות שונות ינותבו ויפוצלו לכיוונים שונים בהתאם לערכי התנע הזוויתי שלהן.

 

איך ניתן למזער את הרכיבים להפרדה או חיבור של אלומות מעורבלות

על ידי שימוש בהדפסת לייזר תלת ממדית ברזולוציה תת-מיקרונית, ניתן למזער את הרכיבים להפרדה או חיבור של אלומות מעורבלות, כך שיוכלו להיות חלק אינטגרלי במערכות אופטיות ממוזערות כדוגמת סיבים אופטיים. הדפסת לייזר תלת ממדית מאפשרת הדפסה של צורות גאומטריות תלת ממדיות שרירותיות. זאת, ע"י סריקה של אלומת לייזר בעלת משך פולס קצר מאד בתוך חומר נוזלי הרגיש לאור, אשר  יכול להפוך למוצק בגאומטריה שנקבעת בהתאם לאופן סריקת הלייזר בחומר.  במחקר זה, אשר פורסם בעיתון Optica, תוכננו ויוצרו בשיטת הדפסה זו התקנים אשר מסוגלים לזהות ולהפריד אלומות מעורבלות בעלות ערכי מומנט תנע זוויתי שונים. יתרה מכך, יוצר גם התקן כמקשה אחת, החוסך פעולות כיוונון מסובכות של שני הרכיבים. 

 

שלומי, מה התוצאה הסופית של המחקר שלך? איפה נוכל לראות את זה מיושם?

"התוצאה הסופית היא יצירת חיישן זיהוי לאלומות מעורבלות. יישום אפשרי הוא בהגברת קבצי מידע ברכיבים ממוזערים, ו\או תקשורת קוונטית חסינה לציתות. אלו יכולים להיות מיושמים ביישומים ביטחוניים, ובעולם התקשורת (טלקום), ואסטרונומיה".

לכתבה המלאה​

עבודת מחקר פורצת דרך של מרינה חייקין

מחקר

13.09.2017
ההתנהגות האופיינית של בניות חכמות של בסיסים מוגדלים
  • מחקר
  • הנדסת חשמל

פרסום מחקר פורץ דרך במגזין PNAS

בעבודת מחקר פורצת דרך שפורסמה החודש בכתב העת של האקדמיה האמריקאית למדעים PNAS , מראים מרינה חייקין - תלמידה לתואר שני בהנדסת חשמל בהנחייתו של פרופ' רמי זמיר מבית הספר להנדסת חשמל באוניברסיטת תל אביב, יחד עם ד״ר מתן גביש מבית הספר להנדסה ומדעי המחשב באוניברסיטה העברית - שניתן לייצר בסיסים מוגדלים טובים על ידי וקטורי הזמן של תת-קבוצה לא רגולרית של תדרים מתוך מטריצת התמרת פורייה דיסקרטית (DFT).

 

האפליקציה – קידוד אנלוגי בתקשורת

מידע המשודר דרך תווך פיזיקלי סובל מתופעות של רעש, דעיכות, הפרעות ועיוותים שונים. בכדי לאפשר שיחזור של המידע במקלט נדרש להגן עליו מראש על ידי תוספת של יתירות (redundantre presentation). שיטת התקשורת הנפוצה בימינו היא ספרתית (digital communication), שאז היתירות נוצרת על ידי הוספה של ביטי בדיקת זוגייות (parity-check bits). למרות זאת, יש לזכור שבדרך כלל הן המידע והן התווך הם במהותם אנלוגיים; לדוגמא, שידור של אותות דיבור ותמונה דרך ערוץ אלחוטי. לכן טיבעי לבחון גם גישות להוספת "יתירות אנלוגית": הרחבה ספקטראלית של אות המידע, או באופן כללי - פרישה של מרחב האותות על ידי בסיס מוגדל. למעשה, לקידוד אנלוגי יש יתרונות נוספים, כמו עמידות טובה יותר בתנאים של אי וודאות, וסיבוכייות מופחתת.     

 

מה זה בעצם בסיס מוגדל?     

למדנו באלגברה שבסיס אורתוגונלי פורש את המרחב אם גודלו שווה למימד המרחב, או את מרחב האותות אם גודלו כמספר דרגות החופש. בסיס מוגדל(over-complete basis, frame)  לעומת זאת מכיל יותר וקטורים מממד המרחב.  עובדה זו מאפשרת מגוון של שימושים בעיבוד אותות ותקשורת, דוגמת ייצוג אותות "דליליםאו הוספת יתירות לצורך קידוד אנלוגי. כמובן שבסיס כזה לא יכול להיות אורתוגונלי, וההגדרה של מהו "בסיס מוגדל טוב" נתונה לפרשנות. על פי אחת ההגדרות, בסיס מוגדל טוב נבחן ביכולת שלו לשחזר את המקור (כלומר לפתור מערכת של משוואות לינאריות)  מתוך תת-קבוצה אקראית של היטלים רועשים. תכנון וניתוח של בסיסים כאלה בממד גבוה הוא אתגר לא פשוט, שלרוב נפתר על ידי הגרלה אקראית של הווקטורים ואנליזה סטוכסטית, למשל ביישומים נפוצים כמו חישה דחוסה (compressed sensing) ולמידה חישובית (machine learning).

 

איזה תכונה אוניברסלית חדשה ומפתיעה מצאתם?

בבסיס העבודה נמצאת תכונת אוניברסליות חדשה ומפתיעה שגילינו, לפיה לבסיס מוגדל "טוביש תכונות דומות לאלו של מטריצות MANOVA,  מבנה המוכר מהתורה של מטריצות אקראיות. דוגמא לתכונה כזו היא פילוג הערכים הסינגולריים של תת-קבוצה אקראית של בסיס מוגדל.

 

אלו השלכות מעניינות של התוצאה גיליתם?

השלכה מעניינת של תוצאה זו היא שבחירה פשוטה אך מושכלת של וקטורי הבסיס מבטיחה ביצועי שיחזור טובים יותר מאלה (של בסיס אקראי) שעבורו לערכים הסינגולריים יש פילוג אופייני מסוגMarcenko  Pasturהעבודה עוסקת במגוון רחב של בסיסים מפורסמים – דטרמיניסטיים ואקראיים, וכוללת ניתוח שחלקו סטטיסטי וחלקו אנליטי עבור מגוון של פרמטרים ומדדי טיב. התכונות הטובות של בסיסים דטרמיניסטיים מאפשרות, בנוסף לשיפור בביצועים, חסכון בסיבוכיות מקום של מערכות תקשורת שיכולות לייצר את מנגנון הקידוד באופן מהיר ומובנה, במקום לשמור מטריצות אקראיות גדולות.

 

קישור למאמר

מחקר

20.06.2016
מדבקה אלקטרונית שפותחה באוניברסיטת תל אביב עשויה לאפשר מיפוי רגשות ולשפר תהליכי

מדבקה בשיטת 'הדבק ושכח', המוצמדת לעור כמו קעקועים זמניים של ילדים, מנטרת את הפעילות החשמלית בשרירים לאורך שעות רבות

  • מחקר
  • הנדסת חשמל

רבים מאיתנו מכירים את ההליך הבלתי נעים של הקלטת אותות חשמליים דרך העור, במסגרת בדיקות רפואיות שונות. מדבקה אלקטרונית חדשנית, שפותחה במכון לננוטכנולוגיה של אוניברסיטת תל אביב, מוציאה כעת את ההליך הזה מן המעבדה, ומייתרת את הצורך בג'ל הקר והדביק שמגביר את מוליכות האלקטרודות. המדבקה החדשה נוחה לשימוש, נגישה לכולם, ואינה מפריעה לפעילות היומיומית של המשתמש. כל אדם יכול לנטר בעזרתה את פעילות השרירים, לאורך זמן, למגוון צרכים רפואיים ואחרים.

 

המחקר, בהובלת פרופ' יעל חנין, ראשת המרכז לננו-מדע וננוטכנולוגיה של אוניברסיטת תל אביב, בוצע במסגרת פרויקט אירופי ובתמיכה חלקית של מאגד BSMT של משרד הכלכלה, והוא יוצג במסגרת סדנת מחקר בינלאומית בתחום הננו-רפואה שנפתחת היום באוניברסיטת תל אביב

 

ממיפוי רגשות ועד להפעלת פרוטזות

יישום אפשרי בולט של המדבקה, שנמצא כיום בתהליכי פיתוח, הוא מיפוי רגשות. "ליכולת לזהות ולמפות את רגשותיהם של בני אדם יש שימושים פוטנציאליים רבים," אומרת פרופ' חנין. "מפרסמים, עורכי סקרים, אנשי תקשורת - כולם מעוניינים לבחון את תגובותיהם של אנשים למוצרים ולמצבים שונים. כיום, בהיעדר כלי מדידה מדעיים מדויקים יותר, הם מסתמכים בעיקר על שאלונים סובייקטיביים. במקביל מנסים חוקרים רבים בעולם לפתח שיטות למיפוי רגשות על ידי ניתוח הבעות פנים, בעיקר על סמך צילומי פנים ותוכנות חכמות. המדבקה שלנו יכולה לתת מענה פשוט ונוח: ניטור הבעות ורגשות על פי האותות החשמליים המתקבלים משרירי הפנים."

 

לדברי פרופ' חנין, זו רק ההתחלה. למדבקה החדשנית צפויים עוד יישומים רבים: מחקר שהושק לאחרונה עם חוקרים בבית החולים איכילוב, עוקב בעזרתה אחר הפעלת השרירים אצל חולים במחלות נוירו-דגנרטיביות, בזמני ערות ושינה; בתחום התחבורה, ניתן יהיה לנטר מדדים פיזיולוגיים המעידים על ערנותם של נהגים, על ידי הצמדתה לשרירים מסוימים; בתחום השיקום, היא עשויה לסייע לפגועי מוח לשפר את השליטה בשריריהם, ולקטועי גפיים להפעיל פרוטזות באמצעות שרירים שנותרו בגדם; בניתוחי מוח, היא תאפשר לרופאים לעקוב אחר הפעילות המוחית והערנות של החולים.

 

ננוטכנולוגיה וקעקועי ילדים

המדבקה האלקטרונית רבת הפוטנציאל מבוססת על שילוב מפתיע בין ננוטכנולוגיה מתקדמת למוצר בסיסי ביותר: הקעקועים הזמניים שילדים אוהבים. "התבססנו על חומרים זמינים ועל שיטות הדפסה תעשייתיות מקובלות, על מנת לקצר ככל האפשר את תהליכי הפיתוח," אומרת פרופ' חנין. "המדבקה עשויה משלושה חלקים: אלקטרודות פחמן, משטח דביק המשמש להדבקת קעקועים זמניים על העור, וציפוי ננוטכנולוגי – פולימר מוליך עם טופוגרפיית ננו, שמשפר את ביצועי האלקטרודות. התוצאה היא מדבקה אלקטרונית יעילה, שמקליטה אות יציב וחזק במשך שעות, ואינה מגרה את העור. מבחינת המשתמש מדובר במדבקה פשוטה שהוא מצמיד לעור בנקודה המתאימה, בשיטת 'הדבק ושכח'. כעת הוא יכול להמשיך בפעילותו הימיומית כרגיל, בשעה שהמדבקה מודדת ומקליטה את עוצמת הפעילות בשרירים."

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>