תחומים:

בחר הכל

ASV

הנדסה

מערכות קוונטיות

תחבורה חכמה

רכב אוטונומי

קול קורא

מכונת הנשמה

COVID-19

מטא-חומרים...

הנדסת חשמל

הנדסה מכנית

אולטרה-סגול

אולטרה-סגול

RoboBoat

MRI

קטגוריות:

בחר הכל

מחקר בפקולטה

מחקר

כנס

פוקוס

חדשות

NEWS

מה מעניין אותך?

כל הנושאים
מחקר
אקדמיה ותעשייה
בוגרים ובוגרות
הנדסת חשמל
הנדסת סביבה
הנדסת מערכות
הנדסת תעשייה
הנדסה מכנית
הנדסה ביו-רפואית
הנדסה ורוח
מדע והנדסה של חומרים
מדעים דיגיטליים להיי-טק
מכון שלמה שמלצר לתחבורה חכמה
הנחת תרחיף הוירוס על משטחים שונים

מחקר

17.01.2021
מחקרה של ד"ר אינס צוקר מהפקולטה להנדסה ומדעים מדויקים, מראה כי ניתן לנטרל

המחקר נעשה בשיתוף עם חוקרים נוספים מהאקדמיה ופורסם במגזין: ​"Environmental Chemistry letters"

  • מחקר
  • הנדסת סביבה
  • הנדסה מכנית

מגפת ה- COVID-19 השפיעה קשות על בריאות הציבור ברחבי העולם. נוצרה בהלה כלל עולמית ומדינות רבות, בהן ישראל, נקטו במדיניות של בידוד, ביטול טיסות, ריבוי בדיקות לאבחון חולים וחיטוי משטחים ע"י חומרי חיטוי שונים במטרה למנוע את התפשטות הנגיף.

עדויות להעברת SARS-CoV-2 באמצעות אירוסולים ומשטחים הדגישו את הצורך ביעול שיטות החיטוי הזמינות. אחת מדרכי ההתמודדות שנצפו עוד בתחילת ההתפרצות, הייתה ריסוס של חומרי חיטוי בסביבתם הקרובה של אנשים.

 

ד"ר אינס צוקר מבית הספר להנדסה מכנית ומבית הספר פורטר ללימודי סביבה ומנהל המעבדה ZuckerLab, ד"ר ינון יחזקאל, אינם ממתינים לירידה בתחלואה ולוקחים חלק במאבק במגפת הקורונה. בימים כתיקונם, השניים מפתחים חומרים ותהליכים לטיפול בסביבה. בין השאר, הם משתמשים באוזון לפירוק מזהמים במים. "אנו מפיקים אוזון מחמצן גזי בעזרת התפרקות חשמלית, ומגיעים לריכוזי אוזון גבוהים בגז, שבדרך-כלל משמשים אותנו לחמצון של כימיקלים במים – וכעת, גם לקטילה של יצורים חיים", מסבירה ד"ר צוקר.

 

האוזון בעיקר מוזכר בהקשר של שכבת ההגנה שהוא יוצר בסטרטוספירה (השכבה האמצעית באטמוספירת כדור הארץ), המגנה עלינו מפני קרינה אולטרה סגולה - UV - מסוכנת הנמצאת באור השמש. ככלל, אוזון נחשב כגז רעיל וכשנוצר בסמוך לפני הקרקע, הוא עלול להשפיע לרעה על הבריאות ולכן נחשב כמזהם אוויר. אולם, ניתן גם להשתמש ביכולות החמצון של האוזון להסרת מזהמים בסביבה באופן בטוח לשימוש בעזרת תכנון הנדסי יעיל. כעת, ד"ר אינס צוקר וצוות המעבדה שלה הוכיחו גם את הפוטנציאל של האוזון הגזי לחיטוי חללים מנגיף הקורונה במהירות וביעילות.

 

ד"ר צוקר חברה לד"ר משה דסאו מהפקולטה לרפואה בבר אילן ויחד עם ד"ר יעל לצטר ממכללת עזריאלי בירושלים, הצליחו להראות את הפוטנציאל של אוזון גזי לחיטוי חללים מנגיף הקורונה במהירות וביעילות. ממצאי המחקר הראשוני פורסמו היום בג'ורנל Environmental Chemistry letters.

היתרון של אוזון גזי אל מול המחטאים הנפוצים (כמו אלכוהול ודומיו), הוא היכולת לפעול לחיטוי כלל החפצים והאויר בחדר ולא רק על-פני משטחים גלויים. 

בתמונה מימין לשמאל: ד"ר יואל אלטר, ד"ר משה דסאו, ד"ר ינון יחזקאל, וד"ר אינס צוקר

 

בין השאר, החוקרים הצליחו למצוא מודל לוירוס שהוא בטוח לשימוש ואינו מדבק, שיכול לשמש להמשך עבודתם על קטילת הוירוס בעזרת אוזון. "הדרך לפיתוח מתקן נוח לחיטוי חללים בעזרת אוזון נסללה, וכעת אנו ממשיכים את עבודתינו כדי לבחון את התנאים האופטימליים לחיטוי משטחים ואירוסולים בעזרת אוזון", מסכמת ד"ר צוקר.

אולטרה סגול

מחקר

29.12.2020
קטילה של וירוס הקורונה בעזרת נורות של לדים בתחום האולטרה-סגול

מאמרה של פרופ' הדס ממן, ראשת התכנית להנדסת סביבה בשיתוף עם פרופ' יורם גרשמן ביוכימאי ממכללת אורנים, ד"ר מיכל מנדלבוים מנהלת המרכז הלאומי לשפעת ונגיפי נשימה בתל השומר ונחמיה פרידמן מתל השומר התקבל ופורסם ב - Journal of Photochemistry and Photobiology B: Biology

 

  • מחקר
  • הנדסת סביבה
  • הנדסה מכנית

עם העליה העולמית במגפת הקורונה (COVID-19) הנובעת מוירוס הקורונה עולה גם הצורך לפתח ולהדגים טכנולוגיות חיטוי חדשניות לצורך קטילה של נגיפים אלה.

 

איך נדבקים בוירוס? 

הוירוס שמהווה הגורם הסיבתי של המחלה COVID-19 (SARS-CoV-2) מדבק לא רק באמצעות טיפות נשימתיות (אירוסולים), אלא יכול להתפשט גם דרך משטחים מזוהמים מריריות האף, הפה והעיניים. יתר על כן, לאחרונה הוצע כי יתכן פיזור אווירני של SARS-CoV-2, אם כי טרם הובאו ראיות ברורות להעברה כזו. לאחרונה הודגמה גם יכולתו של הוירוס לשרוד באירוסולים במשך 3 שעות לפחות ועד 72 שעות על משטחי פלסטיק, דבר המצביע על סיכון לזיהום ארוך טווח.

 

פיתוח מהפכני לקטילת הוירוס

הקרנה באור אולטרה-סגול ultraviolet היא שיטה נפוצה לקטילה של מיקרואורגניזמים פתוגניים (גורמי מחלות), כולל וירוסים. קטילה על ידי אור אולטרה-סגול עלולה להתרחש באמצעות כמה מנגנונים, ביניהם פגיעה בחומצות גרעין, חלבונים או ייצור פנימי של רדיקלים של חמצן.

 

"במחקר שביצענו נמצא ששילובי UV-LED באורכי גל שונים משפרים את יעילות הקטילה ומונעים התאוששות של מחוללי מחלות במים על ידי הפעלת מספר רב של מנגנוני נזק. שיטת חיטוי זו נמצאה יעילה עבור נגיפים וחיידקים רבים כגון: אדנווירוס, פוליו-וירוס, איקולי כולל SARS-COV-1" מסבירה פרופ' ממן. 

 

מנורות ה- UV הסטנדרטיות מכילות כספית, ולכן מנסים לחפש אלטרנטיבות. נורות לדים (דיודות פולטות אור אוlight emitting diodes), מהוות מקור אור חדש עם יתרונות רבים.

בשל גודלן הקטן, זמן תפעול מידי ודרישת מתח נמוכה נורות הלד מאפשרות  הפעלה באמצעות סוללה או פאנל סולארי. עם זאת לנורות אלה שטף פוטונים נמוך וככל שיורדים באורך הגל  מחיר הנורות עולה. מגבלות אלה הופכות את השימוש בנורות באורכי גל גבוהים יותר אטרקטיביות יותר. עד כה אף מחקר לא בדק את יעילות נורות לדים באורכי גל שונים על קטילה של נגיפי קורונה אנושיים. קבוצת המחקר השתמשה בווירוס הקורונה האנושי  (HCoV-OC43)לבחירת האורך גל האפקטיבי ביותר.

 

ממצאי המחקר והמשך פיתוח

קבוצת המחקר מצאה כי לאורך גל של 280 ננומטר יעילות קטילה יחסית דומה ל- 260 ננומטר, כאשר מנת קרינה של 10 mJ/cm2 מושגת בפחות מחצי דקה ומתקבל מעל 99.9 אחוז קטילה. התוצאות הללו משמעותיות כי העלות של לדים ב- 280 ננומטר נמוכה בהרבה משל כאלו באורכי גל נמוכים יותר, והן יותר זמינות בשוק, ולכן מתאפשר שילוב של נורות כאלה לצורך חיטוי מים, משטחים, שילוב עם מזגנים לחיטוי אוויר וכד'. בנוסף, החוקרים יתחילו בקרוב מחקר עם פרופ' קלארק מאוניברסיטת נורת ווסטרן בארה"ב לפיתוח של משטחי מגע high touch screen עם קטליסט שקוף משופעל בנורות לדים בתחום האור הנראה לקבלת משטחים עם יכולת חיטוי עצמי.

התמונה מראה את היעילות של נורות לדים לחיטוי וירוס הקורונה האנושי

התמונה מראה את היעילות של נורות לדים לחיטוי וירוס הקורונה האנושי

 

צוות החוקרים מאחורי הפיתוח

המחקר בוצע במשותף עם פרופ' יורם גרשמן ביוכימאי ממכללת אורנים, ד"ר מיכל מנדלבוים מנהלת המרכז הלאומי לשפעת ונגיפי נשימה בתל השומר, נחמיה פרידמן מתל השומר, ופרופ' הדס ממן, ראשת התוכנית להנדסת סביבה בבית הספר להנדסה מכנית, אוניברסיטת תל אביב. המאמר התקבל ב Journal of Photochemistry and Photobiology B: Biology.

תרשים של הפעולה

מחקר

02.12.2020
מטא-חומרים טופולוגים מכנים פורצים את מגבלות החוק השלישי של ניוטון

המחקר פורסם בכתב העת היוקרתי:
​"Physical Review Letters"

  • מחקר
  • הנדסה מכנית

 

מאמרם של ד"ר לאה ביילקין-סירוטה ופרופ' יאיר שוקף מבית הספר להנדסה מכנית בשיתוף עם ד"ר רוני אילן וד"ר יואב לחיני מבית הספר לפיזיקה ולאסטרונומיה פורסם בכתב העת היוקרתי Physical Review Letters

​שינוי נקודת מבט יכול לחולל פלאים. זה נכון במיוחד כאשר מדובר בהבנת תכונות של חומרים באמצעות טופולוגיה, "רעיונות המחוללים מהפכה בפיזיקה של חומר מעובה", לדבריה של ד"ר רוני אילן מבית הספר לפיזיקה ולאסטרונומיה באוניברסיטת תל אביב. טופולגיה והשפעתה על תכונות פיזיקליות של חומר הוא תחום מחקר, אשר צבר תאוצה בפיזיקה של חומר מעובה. לאחרונה רעיונות אלו התפשטו לתחומים נוספים, כולל אופטיקה ופוטוניקה, כמו גם אקוסטיקה ומערכות מכניות אחרות, בהן קיימות עוד מורכבויות.

 

גלים במערכות מכניות יכולים לספק תובנות לגבי הפעולה של מערכות קוונטיות, כולל תופעות טופולוגיות. אולם, בנסיון לממש חלק מתופעות אלו חוקרים נתקלו במחסום בדמות החוק השלישי של ניוטון, אשר קובע שכל פעולה חייבת לגרור תגובה נגדית שווה בגודלה ומנוגדת בכיוונה. קיימות תופעות קוונטיות שיישום שלהן באנלוגיה מכנית דורש שבירה של ההופכיות הזו. כעת, חוקרים מאוניברסיטת תל אביב מצאו דרך ליישם התנהגות לא ניוטונית במערכות מכניות, ובכך לפתח אנלוג מכני לתופעות טופולוגיות קוונטיות מורכבות. הישג זה עשוי לספק תובנות חדשניות גם לגבי מערכות מכניות וגם לגבי מערכות קוונטיות, אשר הטופולוגיה מכתיבה את התנהגותן.

 

צוות החוקרים שילב מומחיות ממספר תחומים שונים – המומחיות של ד"ר רוני אילן בתיאוריה של מצב מוצק, של פרופ' יאיר שוקף – מבית הספר להנדסה מכנית - בחומר מעובה רך, של ד"ר יואב לחיני - מבית הספר לפיזיקה ולאסטרונומיה - בפוטוניקה טופולוגית ומערכות מורכבות, ולבסוף, החוליה החסרה שאיחדה הכל, הרקע של ד"ר לאה ביילקין-סירוטה - מבית הספר להנדסה מכנית - בתורת הבקרה. "איכשהו כולנו התכנסנו כשלאה הגיעה, והתחלנו לדבר על הדברים האלה", אומר לחיני.

 

שבירת סימטריות

הקשיים המופיעים כשמנסים לתכנן אנלוגיות מכניות למערכות קוונטיות קשורים לשבירת סימטריה. במערכות ששוברות סימטריה מרחבית, הדבר יכול לבוא לידי ביטוי בכך שכוחות האינטראקציה בין רכיבי המערכת הם שונים עבור כיוונים שונים, בדומה למה שקורה למשל באפקט הול הקוונטי. יישום תופעות כאלה במערכות מכניות הוא די טבעי, מכיוון שכדי לשבור סימטריה מרחבית אפשר פשוט לשחק עם הגיאומטריה. אבל שבירת סימטריה בזמן, הדרושה למימוש תופעות טופולוגיות מסוימות, מתבררת כסיפור הרבה יותר מורכב.

 

ברמה המיקרוסקופית, מכניקה היא הפיכה בזמן - אם נצלם שני חלקיקים שנעים זה לקראת זה ומתנגשים, ואז נריץ את הסרט אחורה, עדיין נקבל התנהגות שנראית הגיונית מבחינה פיזיקלית של שני חלקיקים שנעים זה לקראת זה ומתנגשים. אולם, התופעות הקוונטיות שמופיעות למשל כתוצאה מאינטראקציה עם שדה מגנטי, שוברות את הסימטריה הזו. עכשיו, אם נריץ את הסרט אחורה, נקבל משהו שמתאר דינמיקה אשר אינה סימטרית להיפוך בזמן. תרגום של תופעות כאלה למערכת מכנית דורש חוסר הופכיות, שמשמעה שכבר אין תגובה שווה לכל פעולה, וזה משהו שמערכות מכניות פשוט לא עושות באופן טבעי.

 

"אנשים עקפו את המחסום הזה בדרכים מורכבות, כמו למשל על ידי ייצור זרימות סיבוביות, שילוב סביבונים מסתובבים, או מורכבויות אחרות שבסופו של דבר מדמות ספינים במערכות קוונטיות", מסביר שוקף. הבעיה היא שהוספת סביבונים או כל דבר מסתובב אחר למשהו שאין בו סיבוב במערכת הקוונטית מוסיפה דרגות חופש שלא קיימות במערכת אותה אנו רוצים לדמות. כך שלמרות שמבחינות מסוימות המערכת מגיבה כמו המערכת הקוונטית הלא הופכית, קשה להימנע מתופעות לוואי לא רצויות הנובעות מדרגות החופש הנוספות האלה. כאן, למומחיות של ד"ר ביילקין-סירוטה בתורת הבקרה היתה יתרון עצום.

 

אינטראקציות וירטואליות

כפי שד"ר ביילקין-סירוטה מסבירה, תורת הבקרה הוא תחום בהנדסה מכנית, שמשתמש בכלים מתמטים בשביל לתכנן אלגוריתמים שייצרו התנהגות דינמית של מערכות בתגובה לעירור חיצוני. תורת הבקרה מאפשרת לממש התערבויות שקיימות לדוגמא במכוניות חכמות או אוטונומיות. באופן מסורתי כאשר מכוניות מתנגשות, הפגושים של המכוניות סופגים את המכה באופן סימטרי, אולם במכונית חכמה, מצלמה אומדת את המרחק למכונית שלפנינו ומתערבת על ידי הפעלת הבלמים כשאנחנו קרובים מדי. כמו שפרופ' שוקף מסביר, זו כבר דוגמא לאינטראקציה לא הדדית בגלל שאין כאן תגובה שווה והפוכה של המכונית שלפנינו, כפי שהיה קורה אילו הפגוש היה עוצר אותנו. החוקרים הצליחו ליישם עקרונות דומים מתורת הבקרה כדי לתכנן מטא-חומר מכני אקטיבי עם אינטראקציות לא הדדיות בין רכיביו.

 

כדי לממש עקרונות אלו, ד"ר ביילקין-סירוטה וצוות המחקר תכננו מטא-חומר מכני המורכב ממערך מחזורי של משקולות מחוברות הנעות רק למעלה ולמטה, כך שיש רק דרגת חופש אחת לכל משקולת. אולם, במקום שהדינמיקה של המערכת תיקבע על ידי חוקי התנועה של ניוטון, היא נקבעת על ידי בקר הממוקם מעל לכל משקולת. הבקר מודד את המיקום של המשקולות השכנות, מחשב כיצד המשקולת הזו היתה מגיבה אילו היתה ביניהן אינטראקצייה לא הדדית, ואז מפעיל את המשוב החוזר הדרוש בשביל לייצר את התגובה הזו באופן מכני. "החלפנו את האינטראקציות הטבעיות של קפיצים בין המשקולות עם אינטראקציות וירטואליות אם תרצו", אומר ד"ר לחיני, ״ובכך יצרנו תווך אקטיבי לא רגיל המשפיע על גלים מכנים במערכת".

 

סימולציות שהחוקרים ביצעו של מטא-חומר עם בקרה אקטיבית הראו שניתן לדמות באמצעותו את מודל הלדיין, שמתאר את אפקט הול הקוונטי בהיעדר שדה מגנטי, מודל שהיה בלתי אפשרי לממש באמצעות רכיבים מכנים פסיבים. בנוסף, הדבר נעשה "ללא חלקים מסתובבים" כמו שד"ר ביילקין-סירוטה מדגישה, ומוסיפה: "ניתן לממש ככה תופעות טופולוגיות שונות על אותה הפלטפורמה". ואכן, החוקרים הצליחו לממש כמה מודלים קוונטיים שונים עם אתה חומרה, רק באמצעות שינוי של אלגוריתם הבקרה.

בתמונה: תרשים של הפעולה

 

אמנם היו כבר הצלחות במימוש מטא-חומרים אקטיבים במימד אחד, אבל העבודה הנוכחית פורצת דרך במימוש של מטא-חומרים דו-ממדיים עם בקרה אקטיבית. כעת ד"ר ביילקין-סירוטה עובדת על מימוש של מטא-חומר כזה באמצעות גלים אקוסטים, אשר קל יותר לשלוט עליהם, והם עשויים לספק תובנות אינטואיטיביות לגבי מכניקת הקוונטים. במקרה זה, גל קול נע בתווך שבין שני לוחות מקבילים, עליהם ממוקמים מיקרופונים, בקרים ורמקולים, אשר יחד מייצרים אינטראקציות לא הדדיות. למערכת יכולות יישומיות, כמו בידוד אקוסטי או הסתרה אקוסטית. אבל החוקרים מקווים כי האנלוגיה המכנית שלהם תתרום להבנה של מצבים טופולוגיים באופן כללי. "אם דברים מתמפים בדיוק אחד לאחר, זה לא מעניין", אומר פרופ' שוקף. "ברגע שהמיפוי לא מושלם, תופעות חדשות ומענינות מופיעות". ד"ר לחיני מוסיף כי "המערכת המכנית יכולה לשלב באופן נשלט רכיבים רבים שקשה או בלתי אפשרי להשיג אותם במצב מוצק – אינטראקציות, אי-לניאריות, פוטנציאלים דינמים, תנאי שפה שונים, ועוד. מערכות כאלו יאפשרו לנו ללמוד איך טופולוגיה מיתרגמת למצבים חדשים, ולהעמיק את ההבנה של תופעות טופולוגיות".

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>
אוניברסיטת תל-אביב, ת.ד. 39040, תל-אביב 6997801
UI/UX Basch_Interactive