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Abstract—Automatic processing of fiber-optic distributed acous-
tic sensing (DAS) data is highly desired in many applications. In
particular, efficient algorithms for detection of events of interest
and their classification are of the utmost importance. Classical ma-
chine learning algorithms are problematic as they require hand-
crafted features to be extracted and their adaptation to other sites
or other DAS systems is difficult. In contrast, artificial neural net-
works (ANN) learn by themselves how to extract relevant features
and signatures in the training phase. The training phase, however,
necessitates the generation of a large database of tagged events
(train-set). In this paper, we describe a new method for generating
train-sets for DAS ANNs and its experimental testing. The method
is based on the generative adversarial net (GAN) methodology. The
use of a GAN facilitated an efficient generation of train-sets from
a computer simulation of the DAS system. The train-set was then
used to train an ANN, which processed experimental data from 5-
and 20-km sensing fibers. Significant improvement in performance
was obtained with respect to ANN trained by only simulation data
or experimental data.

Index Terms—Optical fiber sensors, distributed acoustic sensing,
machine learning, neural networks, seismic measurements.

I. INTRODUCTION

W ITH the significant progress in fiber optic Distributed
Acoustic Sensing (DAS) in recent years [1]–[3], effi-

cient automatic processing schemes of its raw data have become
highly desired. DAS systems are capable of continuously mon-
itoring acoustic signals and vibrations along tens of kilometers
with high sensitivity and high update rate. This is accomplished
using a conventional telecom-type optical fiber whose Rayleigh
backscatter profile is measured repeatedly by a reflectometric
method. DAS technology has many advantages over competing
technologies as it is simple to deploy, immune to electromag-
netic interference, cost-effective and requires no inline ampli-
fication or power supply. Whether it is based on Optical Time
Domain Reflectometry (OTDR) or Optical Frequency Domain
Reflectometry (OFDR), a DAS system comprises an interrogator
and a sensing optical cable. The backscattered light is detected
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and the output of the detector is processed to yield spatially en-
coded acoustic and vibration signals. With meter scale spatial
resolution and tens of kilometers sensing range, DAS is ideal
for applications such as border protection, intrusion detection,
railway monitoring, pipeline security and many other potential
applications. A DAS system typically acquires ∼1000 complex
backscatter profiles per second and processes them in real time.
The data rates of optical data generally exceed 10 Mbyte/s, and
may accumulate to more than 1 Tbyte of data per day. In order
for this huge amount of data to be useful, it is imperative to de-
velop automatic, efficient and accurate tools for processing the
recorded signal. Specifically, detection, classification and local-
ization of recorded events is of the utmost importance.

Due to the complexity of the optical data, its high bitrate
and the need for real time processing, state-of-the-art machine
learning algorithms are ideal candidates to extract the desired in-
formation. Classical machine learning algorithms require hand-
crafted features to be extracted from the data in order to train
and predict. Several studies have been published using such
techniques [4]–[6].

More recently, Artificial Neural Networks (ANN), which
learn by themselves how to extract relevant features and sig-
natures in the training phase, have been employed for DAS data.
The power of ANN technology cannot be overstated and its
range of applications have been increasing tremendously in re-
cent years [7]–[9]. What started as a tool for computer vision
and image processing [10], has expanded to many other fields
such as medicine [11], audio processing [12] as well as optics.
In the optics field it was used for end-to-end modeling of a
complete optical communications system [13], for applications
of computational imaging [14], [15], for controlling self-tuning
mode-locked lasers [16], for improving optical microscopy [17]
and more. Despite their growing popularity, only few studies
investigated ANNs for DAS applications [18]–[20]. For exam-
ple, Liehr et al. [21] utilize ANN to predict strain in real-time
applications using the wavelength-scan coherent optical time
domain reflectometry approach. Their method allows improve-
ment in strain noise and linearity of the sensor response. Aktas
et al. [22] used a 5 layer Convolutional Neural Network (CNN)
to classify 6 seismic events at a vicinity of the sensing fiber. Teje-
dor et al. [23]–[26] developed a complex system composed of a
Gaussian Mixture Model (GMM) along with Multilayer Percep-
tron (MLP) to extract features and classify 8 seismic events. The
two latter studies have shown good classification results on long
DAS systems (>20 km). It is well known that the effectiveness
of these advanced tools depends strongly on the training phase.
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The training phase, in turn, necessitates generation of a large
database of tagged events. In the case of DAS, generation of such
a database, even with human tagging, is particularly difficult and,
as appears in the aforementioned research reports, requires sig-
nificant resources of time and labor. The requirement for large
amounts of training data is one of the disadvantages of using
ANNs. Another great disadvantage of all the above-mentioned
techniques is that their adaptation to other sites or other DAS
systems is likely to require significant time and human resources
as some characteristics and features of the processed data may
vary. This is especially true for ANNs that heavily rely on par-
ticular characteristics of the training data.

An approach to deal with these disadvantages is via computer
simulations. Indeed, this may significantly simplify the ANN
development stage and allow tremendous saving in time and
costs. However, this approach requires highly accurate mod-
eling of the optical DAS system, the generation and propa-
gation of the seismic/acoustic waves in the medium and the
interaction between the waves and the fiber. The physical
parameters and details needed for such modeling are rarely
available.

Recently we proposed a solution to this problem [27]. Using
a Generative Adversarial Network (GAN [28]) we efficiently
increased the training dataset with simulation signals [27], [29].
A GAN is a tool for learning the distribution of a given data.
It is composed of two models, a generator and a discriminator,
trained as adversaries. The generator is trained to capture the data
distribution, while the discriminator is trained to differentiate be-
tween generated data and real data. The training is terminated
when the generator generates data which the discriminator fails
to discriminate from the real data. The GAN architecture is find-
ing more and more applications since its introduction in 2014.
It was proved successful in rendering of image scenes [30], in-
painting [31], 3D modeling [32] and more. In the current study,
it is shown that this technique is also useful in refining synthetic
DAS data of 5 km and 20 km long sensing fibers and enabling
them to mimic real experimental data. The synthetic data was
generated via finite element simulations. To increase the valid-
ity and diversity of the training set, the simulations included the
effect of noise on the optical measurement system and other pa-
rameters such as speed and attenuation of the seismic waves or
the distance of the excitation from the fiber. Detailed descrip-
tion of the simulation is given in Section IV.B. This simulation
data was refined using the trained generator model so that they
will represent the true experimental data more faithfully when
training the final classification network. We fine-tuned this net-
work by using an additional small set of tagged experimental
data.

In the current paper the preliminary results presented in [27]
are expanded. The simulations at the basis of the method and
the configurations of the deep-learning networks are described
in detail. Multi-class classification performance on the previous
5 km sensing fiber and new results from a 20 km fiber is pre-
sented. In these in-campus experiments, human footsteps and
vehicles at the vicinity of the fiber were detected from ambient
noise and classified using the proposed approach.

In the realistic case of a long sensing fiber with diverse ambi-
ent noise, different versions of FiberNet, appropriately trained,
can be used to process different sections of the fiber.

The paper is organized as follows: Section II presents the
methods used to apply deep learning for processing of DAS
data with emphasis on the GAN approach. Sections III and IV,
respectively, detail the networks architecture and the data sets
used. Section V presents classification results and Section VI
concludes.

II. METHODS

In this study, an OFDR system is used to interrogate the sens-
ing fiber. Detailed description of the principles of OFDR-based
DAS can be found in [33]. Briefly, in OFDR the laser instanta-
neous frequency is scanned linearly with time. The light is split
to reference and interrogation beams. The interrogation beam is
launched into the sensing fiber. The backscatter from the fiber
is mixed with the reference and the result is detected by a bal-
anced detector. Each position in the fiber yields a different beat
frequency at the detector output. Fourier transform of the detec-
tor output yields the complex backscatter profile of the fiber. As
in many other DAS systems, OFDR gives both the amplitude and
phase of the backscatter signal. Both these signals can be used as
inputs to the detection and classification signal processing layer
and both have their respective advantages and disadvantages.
The use of the amplitude is simple and robust. The use of phase,
on the other hand, requires more elaborate processing, but can
provide linearity of the signal with respect to the excitation and
enhanced SNR [34], [35]. A disadvantage of phase processing
is the risk for phase wrapping and phase ambiguity when the
excitation is strong. Our use of ANN for the processing of the
raw data enabled a straightforward fusion of both modalities.

The complex fiber profile, acquired by the DAS system, was
parsed to segments. In this study all processing was performed
on segments, which were taken from a buried section of the
fiber. In realistic scenarios all fiber sections can be processed
independently in parallel to obtain real-time operation.

In each segment, both the amplitude and the phase difference
between consecutive sample resolution cells (differential phase)
were calculated. These two images (amplitude and differential
phase) were normalized independently and appended to create
a ‘two channel image’ (similarly to RGB images but with two
channels instead of three). The two-channel image, correspond-
ing to 0.5 s time interval and specified fiber segment, is the input
to the network. With update rates of 2000 scans/s and 1000
scans/s and fiber segments of ∼90 and ∼120 m for the 5 km and
20 km experiments respectively, the corresponding input image
sizes were 50 × 500 and 32 × 250 pixels, respectively.

Having short time intervals reduced the processing latency
and made the method compatible with real-time operation. It
enabled capturing fast occurring details of the seismic excita-
tions but led to a presence of one or zero human steps in each
image. This means that the tested network did not enjoy longer
time-scale-features, primarily cadence rate. An additional clas-
sification layer, which uses this information, may significantly
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improve the performance. In addition, the segment size used
determined the localization abilities of the system, since the po-
sition of the classified target is within the known segment.

One of the problems with training neural networks for DAS
data is the data acquisition and tagging. To overcome this issue,
we trained the networks on simulated data. As there is typi-
cally considerable difference between simulated data and the
true data, we used a neural network that adjusted the simulated
data such that they became more similar to the true data. As
mentioned above, for this purpose we used GANs.

The GAN architecture used in this study is called Conditional
GAN (C-GAN [23]). This version of GAN connects the gen-
erator and discriminator through some extra information in a
conditional manner. In this case, the generator learns to gener-
ate from a fake sample with a specific condition rather than a
generic sample from unknown noise distribution.

A specific C-GAN variant combines simulation and experi-
mental data [29] and is referred to as SimGAN. In the SimGAN
methodology, the generator is trained to transform simulation
data to appear realistic, while the discriminator is trained to dif-
ferentiate between generated data and real data. It is very useful
for applications that suffer from an insufficient number of train-
ing examples that cannot be artificially increased using simula-
tions (due to modeling complexity). It enables the increase of
the size of the database for further analysis. For example, eye
gaze estimation, 3D objects rendering and face rotation, have
limited databases that restrict their classification performance.
Using this methodology, their classification performance has in-
creased [29]. As mentioned above, experimental data in the DAS
case is difficult to acquire and/or simulate. Therefore, the Sim-
GAN methodology can be used to refine relatively simplified
simulations to have the features of real field experiment data.
This can increase the efficiency of the training phase of a clas-
sification ANN.

Denote the generator, Gθ, and the discriminator, Dφ, where θ
and φ are their weights, respectively, the real experimental data
as y ∈ Y , and the simulation data as x ∈ X . The cross-entropy
loss used to optimize the discriminator is formulated as follows:

LD (φ) = −
∑

i

log (Dφ (Gθ (xi)))−
∑

j

log (1−Dφ (yj)).

(1)
The generator is trained to accurately mimic genuine data

using two weighted loss functions:

LG (θ) = −
∑

i

log (1−Dφ (Gθ (xi))) + λ‖Gθ (xi)− xi‖1.
(2)

The first term is the cross-entropy term that aims at “fool-
ing” the discriminator, i.e., making the generated data looks like
the experimental one. The second term is a regularization term
weighted by a scalar λ that does not allow the generated data
deviate much from the input simulated data. The purpose of this
term is to keep the class information in the generated sample,
i.e., if the input corresponds to a step, we want the generated
realistic sample to contain a step as otherwise we will not be
able to use the same labels of the simulated data. We used the

TABLE I
FIBERNET ARCHITECTURE

L1 norm, to allow robustness in the deviation from the input as
is common in image rendering.

After converging to an optimal generator, the classification
network is initially trained using the refined simulation data.
The next phase is fine-tuning the network using a smaller ex-
perimental data-set. The purpose of this second training stage is
to fine-tune the network to a more optimal working point with
respect to the system’s data.

The technique was implemented using Keras backend (Ten-
sorFlow version 1.8) with i7 CPU, 32 GB RAM and an NVIDIA
GeForce GTX 1080 Ti GPU (11 GB).

III. NETWORK ARCHITECTURE

Since the task of classifying seismic events, from the input
described above, is analogous to classification of objects from
images, the ANN model we employed was a Convolutional Neu-
ral Network (CNN), which is commonly used for classification,
segmentation and image denoising [7]–[9]. The architecture was
based on Oxford’s VGG16 [8], which is known for its success
in classifying the ImageNet dataset [37]. We added a convolu-
tional layer at the network’s input to match the original number
of channels in VGG (with a kernel size of 5, a unit stride and
ReLU as the activation function), and also a fully-connected
layer at the end (with ReLU as the activation function and batch
normalization for regularization). The VGG16 convolution lay-
ers’ weights were initialized by the ImageNet pre-trained values,
and the other layers were initialized with random weights. All
layers were trained. The input images’ channels were normal-
ized, independently, to the range [−0.5, 0.5]. See Table I for the
full architecture of what we refer to as FiberNet.

The 5 km architecture required 127 M FLOPs and the 20 km
architecture 93 M FLOPs. The reason for the difference lies in
the fact that the input sizes were different, i.e., 50 × 500 and
32 × 250 for the 5 km and the 20 km respectively. Note though
that it is possible to independently process each segment, which
allows a parallel processing of the whole fiber. To check the
feasibility of the parallel computing approach the following tests
were made: the 20 km fiber was parsed to 167 non-overlapping
segments and the 5 km fiber was similarly parsed to 56 segments.
In each case all the segments were processed in parallel by the
GPU. These parallel calculations took roughly ∼100 ms in both
cases. Considering that each segment corresponded to a duration
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Fig. 1. Optical setup.

Fig. 2. Experimental examples of 5 km sensing fiber: (a) vehicle (b) footstep.

of 0.5 sec, the method is potentially compatible with real-time
operation.

The GAN’s discriminator model has the FiberNet’s architec-
ture. To train a multi-class GAN, the final fully-connected layer
is implemented with 1 +Nclasses outputs to differentiate be-
tween: noise, footstep, vehicles and simulations [38], [39]. The
generator consists of a 6-layer residual network, inspired by its
performance in images denoising [40]. A 3 × 3 convolution ker-
nel with 65 filters is used for each layer, where one of them is
used to calculate the residual image. The weight λ from (2), is
set to 10−5. In each GAN training step, the generator is trained
on 12 batches and the discriminator is trained on one batch. Each
batch consists of 30 signals. An example of the refiner effect on a
footstep simulation is shown in Fig. 4. In this figure (and also in
Fig. 2 and Fig. 3), the two image channels are shown: the upper
image is the power and the lower image is the differential phase.
Fig. 4(a) demonstrates a footstep generated by simulation while
Fig. 4(b) shows its refined version after propagation through the
generator. Notice the change in the signature and background
noise.

Training the FiberNet classification network consisted of two
phases: first using refined simulation data and then fine-tuning
with experimental data. Training used a batch-size 30, and data
augmentation for more robust performance. The augmentation
included flipping the image along the fiber distance axis and ran-
domly translating it on both axes. Optimization was performed
using Stochastic Gradient Descent (SGD).

Fig. 3. Experimental examples of 20 km sensing fiber: (a) vehicle (b) footstep.

Fig. 4. Simultion of a seismic footstep signature from a 20 km DAS system
(a) and its refined image (b). The insets zoom-in on the excitation signature to
show fine details.

IV. DATASETS

The datasets used in this study were of two types: datasets
recorded in field experiments and datasets generated by com-
puter simulations. Both datasets were used to train the GAN and
the classification networks. The simulation datasets comprised
∼70 k images for the 5 km fiber and ∼150 k for the 20 km fiber.
The experimental datasets comprised ∼49 k images taken with
the 5 km sensing fiber and ∼10 k images with the 20 km fiber.
The smaller number of signals in the 20 km case was a result of
the very noisy measurement conditions in our (in-campus) test
field. These conditions led to degraded SNR and limited time
for recording. Hence, additional simulations were added to the
training phase in this case.

The test sets were recorded on different days than the training
datasets and were generated by different subjects. Specifically,
the footsteps correspond to a ∼75 kg person in the test set and to
a ∼60 kg person in the train set. The vehicle was a small campus
car in the test set and Renault Kangoo in the train set. Test sets
consisted of 135 images per class for the 5 km fiber and 224
images per class for the 20 km fiber.

The rest of this section describes in detail the generation of
the experimental and simulation datasets.

A. Experiments

Field experiments were conducted at the backyard of Tel-Aviv
university school of Electrical Engineering. 200 m of telecom-
type optical cable were buried∼0.5 m below the ground surface.
The rest of the cable was deployed to the author’s lab where ad-
ditional fiber spools could be concatenated to it. Interrogation
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was performed by a self-built OFDR DAS system, comprising
an ultra-coherent laser with central wavelength of 1550.12 nm
[2], [33]. Two sensing fibers were used in this study- one with
a 5 km spooled fiber preceding the buried cable and the other
with a 20 km spooled fiber (see Fig. 1). The sensing fiber scan
rates were 2 kHz and 1 kHz for the 5 km and 20 km fibers
respectively. In OFDR the processing window is the portion of
the scan period, which is sampled and processed. The processing
comprises primarily of a Fourier transform, which yields the full
fiber complex reflection profile. In our experiments, the process-
ing window was set to 13.1 μs, which determined the frequency
range that is swept by the laser and hence determined the sam-
pling and spatial resolution of the measurements. The optical
sampling frequency was set to 1.25 Gsamples/s. The sampling
resolution (after FFT) was ∼1.8 m/sample and ∼3.8 m/sample
for the 5 km and 20 km experiments respectively. The spatial
resolutions for each experiment was estimated, based on simu-
lations, to be ∼5.5 m and ∼10.3 m respectively. In reality, these
values were probably slightly bigger due to imperfections in the
scan which were not taken into account by the simulation.

As mentioned above, the lengths of the fiber segments used
as inputs to the ANNs corresponded to ∼90 m for the 5 km fiber
and ∼120 m for the 20 km one. Examples of an input image
for 5 km sensing fiber and 20 km sensing fiber are presented in
Figs. 2 and 3 respectively.

In both figures, (a) corresponds to a recording of a vehicle at
the vicinity of the fiber and (b) corresponds to a footstep. All ex-
citations were performed at the vicinity of the buried fiber cable,
i.e., 2–3 meters. The lower SNR in the case of the 20 km fiber is
evident. Evaluation of the Power Spectral Densities (PSDs) of
the differential phases, via averaging over all noise-tagged seg-
ments, yielded 30 mrad/

√
Hz and 55 mrad/

√
Hz for the 5 km

fiber and 20 km fiber respectively. This distance-dependent noise
is attributed mainly to random deviations from linearity of the
laser frequency scan. A closely related effect is deterministic
deviation from linearity [41]. This effect, which is also present
in the current setup, led to a distance-dependent degradation in
the spatial resolution, smearing of the signal and an additional
deterioration in the SNR. Another noise source is the additive de-
tection noise. It should be emphasized that non-ideal conditions
such as these are actually desired in this work, which strives to
prove the effectiveness of ANN for DAS in realistic conditions.

B. Simulations

To generate synthetic datasets of events of interest, a com-
puter simulation was developed. The computer simulation had
two main parts: an optical part and a seismic part. The optical part
repeatedly produced a complex backscatter profile of a synthetic
sensing fiber, similar to the description in [42]. After each cycle,
the phases of the reflection coefficients were updated to simu-
late the externally induced acoustical perturbations (described
below). To generate the complex backscatter profile, the fiber
was represented by its impulse response. The impulse response
was generated by dividing the fiber into small sections of length
of 8 cm. For each section a backscatter coefficient was drawn
from a complex normal distribution. The optical loss of the fiber

(−0.2 dB/km)was taken into consideration by multiplying each
coefficient with its appropriate loss term. The backscatter signal,
at the input of the coherent receiver, was obtained by convolv-
ing the fiber’s impulse response with the input waveform. Once
the backscatter signal was known it was added to the reference
(the input waveform). The square magnitude of the resulting sig-
nal was calculated to yield the detector output. Finally, Fourier
transform of the detector output yielded the simulated complex
backscatter profile of the fiber.

One of the major advantages of SimGAN [29] is that it saves
the need to meticulously simulate a training dataset and allows
using simpler models. It is particularly useful when there are
important physical parameters which are unknown. The models
are based on empirical observations and their usefulness is tested
according to the performance of the network.

Two types of noise signals were introduced into the optical
part: additive detection noise and phase noise. The additive de-
tection noise, which represents shot noise and thermal noise,
was added to the generated detector output. Laser phase noise
was introduced by adding a noise term to the instantaneous fre-
quency of the laser, which was based on a sinusoidal scan for a
fast and accurate measurement [33]. The noise parameters were
manually tuned to best fit the experiments. Despite this tuning
procedure, uncertainties in the modeling of the noise and the
values of its parameters led to apparent differences between the
simulated and measured noise.

The seismic part of the simulation assumed wavelets em-
anated from a point source (described in the following para-
graph) propagating radially in a homogenous medium at a speed
of ∼200 m/sec, which corresponds to seismic surface waves.

Two excitations that were studied in this work, human foot-
steps and vehicles, were modelled. The temporal and spectral
signatures of the seismic events were determined empirically
by analyzing the experimental results. Since the physical mod-
els of seismic propagation and coupling to the fiber cable are
very complex, the GAN architecture was employed to mitigate
this gap. The excitations were introduced into the simulation
as modifications to the phase response of the sensing fiber. The
modifications were made in each scan period. Footsteps are mod-
eled as wavelets with center frequencies uniformly distributed
in the range 55–60 Hz and with duration uniformly distributed
between 13.3 ms and 13.5 ms. Synthetic vehicles’ signals were
created by generating white Gaussian noise and filtering it to the
range 150–270 Hz, according to the power spectral density of
the experimental samples.

An example of a footstep simulation at the vicinity of 20 km
fiber is presented in Fig. 4(a). The differences between simula-
tions and experiments (see Fig. 3) are attributed to noise sources
that have not been simulated, such as non-linear frequency scan,
intensity noise and the simplified seismic model. These differ-
ences are significantly reduced thanks to the GAN architecture,
as shown in the results section of the paper.

V. RESULTS

Initial results of the method’s performance have been reported
in [27]. The method was used there for discerning between
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TABLE II
CLASSIFICATION ACCURACY FOR A 5 KM FIBER AND 3 CLASSES OVER ONE

TRAINING SESSION (NOISE, FOOTSTEPS AND VEHICLES)

footsteps at the vicinity of a 5 km fiber and ambient noise. It
was shown that the proposed methodology enabled improve-
ment of the detection accuracy from ∼52% (simulation only) to
94%. Adding a third class (vehicles) produced the results sum-
marized in Table II. Despite the limited scale of the experimen-
tal dataset, the proposed approach led to a remarkable increase
in classification accuracy. The confusion matrices at the right
column of the table show cross-class classification between the
three classes. The rows (from left to right) and columns (from
top to bottom) in the matrices correspond to noise, footsteps and
vehicles respectively.

Training the network on experimental data only classified cor-
rectly with high probability the footsteps and the vehicles (96%
and 99.3% respectively) but the false alarm rate was very high
(54%). Training on simulation data alone yielded poor perfor-
mance. Once again, a marked increase in accuracy is observed
when refined simulation data is used. Further improvement was
obtained by fine-tuning this network with experimental data.
Classification accuracy for footsteps achieves 94% and 100%
for vehicles. The false alarm rate is reduced to 45%. While a
much lower false alarm rate is desired, the current improvement
shows the potential of the proposed method and its ability to
produce valid train sets. Analyzing the performance of the al-
gorithm’s detection accuracy, i.e., only discerning between an
event and noise, achieved a F1 score of 87.72% with experi-
mental data only and increased to 89.85% using both the refined
simulation and the experimental data.

A rough estimate for the robustness of the method was
obtained by performing 6 sessions of training, based on

TABLE III
CLASSIFICATION ACCURACY FOR A 20 KM FIBER AND 3 CLASSES (NOISE,

FOOTSTEPS AND VEHICLES)

refined-simulations and on refined-simulations + finetuning, on
the 5 km datasets. The mean accuracies and their standard de-
viations were found to be 62.9% ± 1.7% and 83.1% ± 2.8%
respectively.

The performance results for the 20 km sensing fiber exper-
iment are summarized in Table III. The impact of the smaller
experimental dataset and decreased SNR is evident. It can be
seen that training on simulations alone is not effective and its
accuracy is equivalent to a random classifier. Yet, the classifica-
tion accuracy has improved from 42% to 80.2%, which is not
very far from the 5 km case, thanks to the presented methodol-
ogy. The F1 score for the detection performance of the algorithm
started from 82.64% when trained on experimental data only
and reached 87.23% using both the refined simulation and the
experimental data.

In both the 5 km and the 20 km experiments, notice that a fair
comparison was made between the different configurations of
the network training. The training was based on two datasets -
the costly experiment dataset and the “free” simulation dataset.
Therefore, just setting their size to be equal is not a fair setup, es-
pecially because the experimental dataset contains true data and
the simulation data is more simplistic. Thus, two cases should
be focused on: (1) a comparison between training based on the
simulation dataset only, with and without the refiner, and (2) a
comparison between training based on the experimental dataset
only and with the addition of the simulation data. In the first
case, the clear improvement due to the refiner is visible when
comparing the second and third rows of Tables II and III. In the
second case, corresponding to the first and last rows of Tables II
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and 3, the small and costly experimental dataset is used. The im-
provement between the first and last row of the results tables, is
attributed to the mended initialization of the network originated
from training with a refiner on the “free” and larger simulation
dataset.

VI. CONCLUSIONS

Distributed fiber optic sensing technology is drawing tremen-
dous interest due to its high sensitivity, high spatial reso-
lution, immunity to electromagnetic interference and cost-
effectiveness. As more and more systems are being purchased
and deployed, the need for automatic and efficient data pro-
cessing, detection and classification algorithms increases. While
ANNs are ideal candidates for this task, the gathering of labeled
data for their training is tedious and costly. In this paper, a deep
learning approach for seismic data processing and its experi-
mental testing is presented. Using GAN methodology, computer
simulation data is refined and used to train ANN classifier. The
GAN-trained network is shown to have significantly improved
performance with respect to classifiers that are trained with sim-
ulation data only or experimental data only. Field experiments
with 5 km and 20 km long sensing fibers are presented, with
footsteps and vehicles excitations at their vicinity. Short time
windows and narrow spatial segments make the method com-
patible with real time operation and localization abilities. Note
that the proposed approach is compatible with real-time parallel
computing as all fiber sections can be processed simultaneously.

Authors remark that no use of voting techniques is presented
in this paper to emphasize the vanilla performances of the
proposed methodology. Implementing such techniques could
greatly improve accuracy performance.

To summarize, this study provides a proof-of-concept for the
use of deep learning methodologies for classifying seismic data
recorded by an optical fiber DAS system, and is adaptable to any
fiber length and medium.
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