


4756

The training phase, in turn, necessitates generation of a large
database of tagged events. In the case of DAS, generation of such
adatabase, even with human tagging, is particularly difficult and,
as appears in the aforementioned research reports, requires sig-
nificant resources of time and labor. The requirement for large
amounts of training data is one of the disadvantages of using
ANNSs. Another great disadvantage of all the above-mentioned
techniques is that their adaptation to other sites or other DAS
systems is likely to require significant time and human resources
as some characteristics and features of the processed data may
vary. This is especially true for ANNs that heavily rely on par-
ticular characteristics of the training data.

An approach to deal with these disadvantages is via computer
simulations. Indeed, this may significantly simplify the ANN
development stage and allow tremendous saving in time and
costs. However, this approach requires highly accurate mod-
eling of the optical DAS system, the generation and propa-
gation of the seismic/acoustic waves in the medium and the
interaction between the waves and the fiber. The physical
parameters and details needed for such modeling are rarely
available.

Recently we proposed a solution to this problem [27]. Using
a Generative Adversarial Network (GAN [28]) we efficiently
increased the training dataset with simulation signals [27], [29].
A GAN is a tool for learning the distribution of a given data.
It is composed of two models, a generator and a discriminator,
trained as adversaries. The generator is trained to capture the data
distribution, while the discriminator is trained to differentiate be-
tween generated data and real data. The training is terminated
when the generator generates data which the discriminator fails
to discriminate from the real data. The GAN architecture is find-
ing more and more applications since its introduction in 2014.
It was proved successful in rendering of image scenes [30], in-
painting [31], 3D modeling [32] and more. In the current study,
it is shown that this technique is also useful in refining synthetic
DAS data of 5 km and 20 km long sensing fibers and enabling
them to mimic real experimental data. The synthetic data was
generated via finite element simulations. To increase the valid-
ity and diversity of the training set, the simulations included the
effect of noise on the optical measurement system and other pa-
rameters such as speed and attenuation of the seismic waves or
the distance of the excitation from the fiber. Detailed descrip-
tion of the simulation is given in Section IV.B. This simulation
data was refined using the trained generator model so that they
will represent the true experimental data more faithfully when
training the final classification network. We fine-tuned this net-
work by using an additional small set of tagged experimental
data.

In the current paper the preliminary results presented in [27]
are expanded. The simulations at the basis of the method and
the configurations of the deep-learning networks are described
in detail. Multi-class classification performance on the previous
5 km sensing fiber and new results from a 20 km fiber is pre-
sented. In these in-campus experiments, human footsteps and
vehicles at the vicinity of the fiber were detected from ambient
noise and classified using the proposed approach.
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In the realistic case of a long sensing fiber with diverse ambi-
ent noise, different versions of FiberNet, appropriately trained,
can be used to process different sections of the fiber.

The paper is organized as follows: Section II presents the
methods used to apply deep learning for processing of DAS
data with emphasis on the GAN approach. Sections III and IV,
respectively, detail the networks architecture and the data sets
used. Section V presents classification results and Section VI
concludes.

II. METHODS

In this study, an OFDR system is used to interrogate the sens-
ing fiber. Detailed description of the principles of OFDR-based
DAS can be found in [33]. Briefly, in OFDR the laser instanta-
neous frequency is scanned linearly with time. The light is split
to reference and interrogation beams. The interrogation beam is
launched into the sensing fiber. The backscatter from the fiber
is mixed with the reference and the result is detected by a bal-
anced detector. Each position in the fiber yields a different beat
frequency at the detector output. Fourier transform of the detec-
tor output yields the complex backscatter profile of the fiber. As
in many other DAS systems, OFDR gives both the amplitude and
phase of the backscatter signal. Both these signals can be used as
inputs to the detection and classification signal processing layer
and both have their respective advantages and disadvantages.
The use of the amplitude is simple and robust. The use of phase,
on the other hand, requires more elaborate processing, but can
provide linearity of the signal with respect to the excitation and
enhanced SNR [34], [35]. A disadvantage of phase processing
is the risk for phase wrapping and phase ambiguity when the
excitation is strong. Our use of ANN for the processing of the
raw data enabled a straightforward fusion of both modalities.

The complex fiber profile, acquired by the DAS system, was
parsed to segments. In this study all processing was performed
on segments, which were taken from a buried section of the
fiber. In realistic scenarios all fiber sections can be processed
independently in parallel to obtain real-time operation.

In each segment, both the amplitude and the phase difference
between consecutive sample resolution cells (differential phase)
were calculated. These two images (amplitude and differential
phase) were normalized independently and appended to create
a ‘two channel image’ (similarly to RGB images but with two
channels instead of three). The two-channel image, correspond-
ing to 0.5 s time interval and specified fiber segment, is the input
to the network. With update rates of 2000 scans/s and 1000
scans/s and fiber segments of ~90 and ~120 m for the 5 km and
20 km experiments respectively, the corresponding input image
sizes were 50 x 500 and 32 x 250 pixels, respectively.

Having short time intervals reduced the processing latency
and made the method compatible with real-time operation. It
enabled capturing fast occurring details of the seismic excita-
tions but led to a presence of one or zero human steps in each
image. This means that the tested network did not enjoy longer
time-scale-features, primarily cadence rate. An additional clas-
sification layer, which uses this information, may significantly
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improve the performance. In addition, the segment size used
determined the localization abilities of the system, since the po-
sition of the classified target is within the known segment.

One of the problems with training neural networks for DAS
data is the data acquisition and tagging. To overcome this issue,
we trained the networks on simulated data. As there is typi-
cally considerable difference between simulated data and the
true data, we used a neural network that adjusted the simulated
data such that they became more similar to the true data. As
mentioned above, for this purpose we used GANs.

The GAN architecture used in this study is called Conditional
GAN (C-GAN [23]). This version of GAN connects the gen-
erator and discriminator through some extra information in a
conditional manner. In this case, the generator learns to gener-
ate from a fake sample with a specific condition rather than a
generic sample from unknown noise distribution.

A specific C-GAN variant combines simulation and experi-
mental data [29] and is referred to as SImGAN. In the SImGAN
methodology, the generator is trained to transform simulation
data to appear realistic, while the discriminator is trained to dif-
ferentiate between generated data and real data. It is very useful
for applications that suffer from an insufficient number of train-
ing examples that cannot be artificially increased using simula-
tions (due to modeling complexity). It enables the increase of
the size of the database for further analysis. For example, eye
gaze estimation, 3D objects rendering and face rotation, have
limited databases that restrict their classification performance.
Using this methodology, their classification performance has in-
creased [29]. As mentioned above, experimental data in the DAS
case is difficult to acquire and/or simulate. Therefore, the Sim-
GAN methodology can be used to refine relatively simplified
simulations to have the features of real field experiment data.
This can increase the efficiency of the training phase of a clas-
sification ANN.

Denote the generator, G, and the discriminator, Dy, where 0
and ¢ are their weights, respectively, the real experimental data
as y € ), and the simulation data as x € X. The cross-entropy
loss used to optimize the discriminator is formulated as follows:

£0(6) =~ Y 10w (D (G (w2))) ~ Y log (1 - Dy 1)
l ' (1)

The generator is trained to accurately mimic genuine data
using two weighted loss functions:

Lc(0)=— Zlog (1= Dy (Go (7)) + A|Go (i) — @il
’ @)

The first term is the cross-entropy term that aims at “fool-
ing” the discriminator, i.e., making the generated data looks like
the experimental one. The second term is a regularization term
weighted by a scalar A that does not allow the generated data
deviate much from the input simulated data. The purpose of this
term is to keep the class information in the generated sample,
i.e., if the input corresponds to a step, we want the generated
realistic sample to contain a step as otherwise we will not be
able to use the same labels of the simulated data. We used the

TABLE 1
FIBERNET ARCHITECTURE
Layer Size in Size out
Conv2D 5km: 500x50x2 Skm: 500x50x3
onv 20km: 250x32x2 | 20km: 250x32x3
(13 corX/GlSangs with Skm: 500x50x3 Skm: 15x1x512
-haye 20km: 250x32x3 | 20km: 7x1x512
max pooling)
Skm: 15x7680
FC1 (ReLU+BN) Ok 7x3584 1x4096
FC2 (ReLU+BN) 1x4096 1x4096
FC3 (ReLU+BN) 1x4096 1x128
Logits (softmax) 1x128 1XNjasses
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L4 norm, to allow robustness in the deviation from the input as
is common in image rendering.

After converging to an optimal generator, the classification
network is initially trained using the refined simulation data.
The next phase is fine-tuning the network using a smaller ex-
perimental data-set. The purpose of this second training stage is
to fine-tune the network to a more optimal working point with
respect to the system’s data.

The technique was implemented using Keras backend (Ten-
sorFlow version 1.8) with 17 CPU, 32 GB RAM and an NVIDIA
GeForce GTX 1080 Ti GPU (11 GB).

III. NETWORK ARCHITECTURE

Since the task of classifying seismic events, from the input
described above, is analogous to classification of objects from
images, the ANN model we employed was a Convolutional Neu-
ral Network (CNN), which is commonly used for classification,
segmentation and image denoising [7]-[9]. The architecture was
based on Oxford’s VGG16 [8], which is known for its success
in classifying the ImageNet dataset [37]. We added a convolu-
tional layer at the network’s input to match the original number
of channels in VGG (with a kernel size of 5, a unit stride and
ReLU as the activation function), and also a fully-connected
layer at the end (with ReL.U as the activation function and batch
normalization for regularization). The VGG16 convolution lay-
ers’ weights were initialized by the ImageNet pre-trained values,
and the other layers were initialized with random weights. All
layers were trained. The input images’ channels were normal-
ized, independently, to the range [—0.5, 0.5]. See Table I for the
full architecture of what we refer to as FiberNet.

The 5 km architecture required 127 M FLOPs and the 20 km
architecture 93 M FLOPs. The reason for the difference lies in
the fact that the input sizes were different, i.e., 50 x 500 and
32 x 250 for the 5 km and the 20 km respectively. Note though
that it is possible to independently process each segment, which
allows a parallel processing of the whole fiber. To check the
feasibility of the parallel computing approach the following tests
were made: the 20 km fiber was parsed to 167 non-overlapping
segments and the 5 km fiber was similarly parsed to 56 segments.
In each case all the segments were processed in parallel by the
GPU. These parallel calculations took roughly ~100 ms in both
cases. Considering that each segment corresponded to a duration
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Fig. 2. Experimental examples of 5 km sensing fiber: (a) vehicle (b) footstep.

of 0.5 sec, the method is potentially compatible with real-time
operation.

The GAN’s discriminator model has the FiberNet’s architec-
ture. To train a multi-class GAN, the final fully-connected layer
is implemented with 1 4+ Njasses Outputs to differentiate be-
tween: noise, footstep, vehicles and simulations [38], [39]. The
generator consists of a 6-layer residual network, inspired by its
performance in images denoising [40]. A 3 x 3 convolution ker-
nel with 65 filters is used for each layer, where one of them is
used to calculate the residual image. The weight A from (2), is
set to 1073, In each GAN training step, the generator is trained
on 12 batches and the discriminator is trained on one batch. Each
batch consists of 30 signals. An example of the refiner effect on a
footstep simulation is shown in Fig. 4. In this figure (and also in
Fig. 2 and Fig. 3), the two image channels are shown: the upper
image is the power and the lower image is the differential phase.
Fig. 4(a) demonstrates a footstep generated by simulation while
Fig. 4(b) shows its refined version after propagation through the
generator. Notice the change in the signature and background
noise.

Training the FiberNet classification network consisted of two
phases: first using refined simulation data and then fine-tuning
with experimental data. Training used a batch-size 30, and data
augmentation for more robust performance. The augmentation
included flipping the image along the fiber distance axis and ran-
domly translating it on both axes. Optimization was performed
using Stochastic Gradient Descent (SGD).
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Fig.3. Experimental examples of 20 km sensing fiber: (a) vehicle (b) footstep.

Fig. 4. Simultion of a seismic footstep signature from a 20 km DAS system
(a) and its refined image (b). The insets zoom-in on the excitation signature to
show fine details.

IV. DATASETS

The datasets used in this study were of two types: datasets
recorded in field experiments and datasets generated by com-
puter simulations. Both datasets were used to train the GAN and
the classification networks. The simulation datasets comprised
~70 k images for the 5 km fiber and ~150 k for the 20 km fiber.
The experimental datasets comprised ~49 k images taken with
the 5 km sensing fiber and ~10 k images with the 20 km fiber.
The smaller number of signals in the 20 km case was a result of
the very noisy measurement conditions in our (in-campus) test
field. These conditions led to degraded SNR and limited time
for recording. Hence, additional simulations were added to the
training phase in this case.

The test sets were recorded on different days than the training
datasets and were generated by different subjects. Specifically,
the footsteps correspond to a ~75 kg person in the test set and to
a ~60 kg person in the train set. The vehicle was a small campus
car in the test set and Renault Kangoo in the train set. Test sets
consisted of 135 images per class for the 5 km fiber and 224
images per class for the 20 km fiber.

The rest of this section describes in detail the generation of
the experimental and simulation datasets.

A. Experiments

Field experiments were conducted at the backyard of Tel-Aviv
university school of Electrical Engineering. 200 m of telecom-
type optical cable were buried ~0.5 m below the ground surface.
The rest of the cable was deployed to the author’s lab where ad-
ditional fiber spools could be concatenated to it. Interrogation



