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A B S T R A C T   

In this paper, we study an extension of the orienteering problem where travel times are random and time- 
dependent and service times are random. Additionally, the service at each selected customer is subject to a 
soft time window; that is, violation of the window is allowed but subject to a penalty that increases in the delay. 
A solution is a tour determined before the vehicle departs from the depot. The objective is to maximize the sum of 
the collected prizes net of the expected penalty. The randomness of the travel and service times is modeled by a 
set of scenarios based on historical data that can be collected from public geographical information services. We 
present an exact solution method for the problem based on a branch-and-bound algorithm enhanced by a local 
search procedure at the nodes. A numerical experiment demonstrates the merits of the proposed solution 
approach. This study is the first to consider an orienteering problem with stochastic travel times and soft time 
windows, which are more relevant than hard time windows in stochastic settings.   

1. Introduction 

When solving routing and scheduling problems, the planner often 
does not have sufficient resources or does not wish to serve all the 
customers. Instead, the planner can prioritize customers by assigning a 
value (“prize”) to each one of them. The orienteering problem is to find a 
tour that visits a subset of the customers and satisfies some operational 
constraints with the objective of maximizing the sum of the values of the 
visited customers. 

Orienteering problems arise in settings such as field service opera
tions, where some tasks are of high priority (e.g., customers who need 
their equipment to be repaired) while others are of relatively low pri
ority (e.g., customers who need to be visited by a technician for regular 
maintenance operation). With the increasing traffic congestion in many 
urban areas worldwide, the travel times of mobile personnel have 
become highly dependent on the time of the journey and the specific 
itinerary. Moreover, in a congested network, the variability of travel 
time is high since it is sensitive to various events, such as road accidents 
and weather conditions. Therefore, there is an increasing need to model 
and solve routing problems that consider time dependency and sto
chasticity in the context of travel times. 

In this paper, we introduce and study the data-driven time-depen
dent orienteering problem with soft time windows (DD-TD-OP-STW). 

This is an extension of the orienteering problem where the selected 
customers are visited subject to soft time windows. That is, each 
customer is characterized by a time window. If the vehicle arrives at the 
customer before the beginning of the time window, it waits at the 
customer location to start the service when the window opens. If the 
vehicle arrives at the customer after the end of the time window, it 
serves the customer and incurs a penalty that increases with the extent of 
the delay. The travel times are random, and their distribution is deter
mined by the departure time from each customer. In practice, the travel 
time between a pair of locations when departing at a given time is 
correlated with the travel time between other nearby origins and des
tinations at the same departure time as well as with these travel times 
when departing slightly earlier or later. These interdependencies may 
significantly affect the optimal route and the subset of selected cus
tomers. The objective is to determine a route a priori that maximizes the 
sum of the collected prizes net of the expected delay penalties due to 
time window violations. 

We note that when travel and service times are stochastic, a route 
that is certain to respect the time windows of all customers can be highly 
inefficient. Soft time windows facilitate a way to model the tradeoff 
between the low probability of being late to the customer and the effi
ciency merits of a tight schedule. 

An effective approach for modeling the stochastic nature of travel 
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times can consider a set of representative scenarios and evaluate the 
average value of the solutions over all cases. Such an approach captures 
the intricate interdependencies discussed above. The scenarios may be 
based on historical information collected by geographical information 
services. 

The rest of this paper is organized as follows. In Section 2, we review 
the relevant literature and identify the gap addressed by this study. In 
Section 3, we provide a formal definition and a mathematical model of 
the DD-TD-OP-STW. In Section 4, we present a branch-and-bound (B&B) 
algorithm to solve the problem and extend it by integrating a local 
search (LS) heuristic into the algorithm. In Section 5, we present the 
results of a numerical experiment and demonstrate the merits of the B&B 
algorithm and, in particular, of its hybrid version. In Section 6, we draw 
conclusions and suggest directions for future research. 

2. Literature review 

Orienteering problems have been the focus of a variety of studies in 
previous decades. For a comprehensive review of many of the previous 
studies, we refer the reader to Vansteenwegen et al. (2011) and Guna
wan et al. (2016). Here, we limit our discussion to some specific variants 
of the problem: Section 2.1 discusses time-dependent orienteering 
problems (TD-OPs); Section 2.2 discusses stochastic orienteering prob
lems (S-OPs); Section 2.3 discusses stochastic and time-dependent 
orienteering problems (S-TD-OPs); and Section 2.4 identifies a gap in 
the literature and states the contributions of this study. 

2.1. Time-dependent orienteering problems 

In time-dependent vehicle routing problems, the travel time from a 
given location i to a given location j depends on the time at which the 
vehicle departs from location i. Travel time is commonly modeled in a 
way that satisfies the FIFO property; that is, Vehicle A that departs from 
location i later than vehicle B cannot arrive at j earlier than Vehicle B. 

To the best of our knowledge, Fomin and Lingas (2002) were the first 
to consider the TD-OP and presented an approximation algorithm for it. 
Verbeeck et al. (2014) studied a similar problem and formulated it as a 
mixed-integer program (MIP). They devised an ant colony system (ACS) 
algorithm to solve the problem and demonstrated its effectiveness by a 
numerical experiment. Gunawan et al. (2014) presented a different 
integer linear program (ILP) formulation and several local search 
(LS)-based heuristics to solve the TD-OP problem. They conducted a 
numerical experiment that illustrated the merits of the algorithms when 
compared with a solution obtained by solving their ILP using CPLEX. 
Mei et al. (2016) studied a multiobjective variant of the TD-OP where 
each customer is associated with several types of prizes and the objec
tives are to maximize the sum of each one of these types. They devised 
several heuristic algorithms for the problem. 

Garcia et al. (2010) studied the time-dependent orienteering prob
lem with hard time windows (TD-OP-TW) and presented an iterated 
local search (ILS) algorithm for its solution. Abbaspour and Samadza
degan (2011) devised a genetic algorithm to solve a variant of the 
TD-OP-TW. Verbeeck et al. (2017) devised an ACS algorithm for the 
TD-OP-TW. Khodadadian et al. (2022) studied a variant of the 
TD-OP-TW and solved it using a variable neighborhood search (VNS) 
heuristic. 

Peng et al. (2019) solved the TD-OP-TW where both travel times and 
profits are time dependent. The problem is formulated as an MIP. A 
dynamic programming (DP) approach is incorporated into an ILS algo
rithm for the solution of the problem. They showed that their method is 
competitive with the solution obtained from CPLEX and outperforms 
several heuristic algorithms. Peng et al. (2020) devised an exact DP al
gorithm for the TD-OP-TW. 

Li (2012) studied the time-dependent team orienteering problem 
(TD-TOP), where multiple routes are to be determined. They formulated 
the problem as an MIP and solved it using a DP algorithm. Garcia et al. 

(2013) studied the time-dependent team orienteering problem with hard 
time windows (TD-TOP-TW). They devised ILS-based heuristics for the 
solution of the problem and numerically showed that their approach 
performs well. Gavalas et al. (2014) and Gavalas et al. (2015) devised 
two new cluster-based heuristic algorithms to solve a variant of the 
TD-TOP-TW. 

2.2. Stochastic orienteering problems 

The stochasticity of the travel and service times in orienteering 
problems can be addressed either by applying a static (off-line) solution, 
where the route is determined a priori before the route is executed, or by 
a dynamic (on-line) policy, in which the route is determined during the 
execution as information is gradually revealed. 

To the best of our knowledge, Teng et al. (2004) were the first to 
consider an orienteering problem with stochastic travel and service 
times (S-OP). They formulated the problem as a two-stage stochastic 
program, and an integer L-shaped solution method was devised. Tang 
and Miller-Hooks (2005) considered an orienteering problem where the 
service time at each customer is an independent random variable drawn 
from a discrete distribution and the travel times and prizes are deter
ministic. They devised an exact branch-and-cut (B&C) algorithm as well 
as a heuristic algorithm. 

Ilhan et al. (2008) studied the orienteering problem with stochastic 
profits; that is, each location is characterized by a normally distributed 
random profit. The objective is to maximize the probability of collecting 
more than a prespecified target profit level. They presented an exact 
algorithm as well as a genetic heuristic to solve the problem. 

Campbell et al. (2011) studied a variant of the S-OP where the cus
tomers are to be visited before a predefined deadline. The planner de
cides in advance on the subset of customers to be visited and on the route 
(a sequence of customers). For each of the visited customers, arriving 
earlier than the deadline results in a prize, while arriving later than the 
deadline implies a penalty. They suggested a DP method for solving 
some special cases of the problem, whereas a VNS heuristic was pre
sented for the general case. Papapanagiotou et al. (2014) and Papapa
nagiotou et al. (2015) studied a problem similar to that of Campbell 
et al. (2011) and devised several Monte Carlo sampling-based methods 
for the evaluation of the objective function. Dolinskaya et al. (2018) 
extended the work of Campbell et al. (2011) by adding the possibility of 
dynamically determining the path between each pair of consecutive 
customers as the travel times in the road network are realized. Their 
solution method incorporates DP elements for the determination of 
paths with a VNS algorithm inspired by Campbell et al. (2011). Pan
adero and Juan (2020) studied the stochastic team orienteering (S-TOP) 
problem and solved it using a VNS framework that applies simulation 
techniques. 

Evers et al. (2014) studied an orienteering problem with stochastic 
parameters that can represent travel time, service time or customer 
demand. They formulated the problem as a two-stage stochastic pro
gram and devised two solution approaches, namely, sample average 
approximation (SAA) and a local search heuristic. 

Gupta et al. (2015) studied an S-OP with stochastic service times and 
deterministic travel times. They considered static and dynamic versions 
of the problem and presented approximation algorithms for the two 
versions. Bian and Liu (2018) studied a dynamic S-OP and suggested a 
multiple plan approach (MPA) strategy. 

Zhang et al. (2014) solved an orienteering problem with time win
dows and stochastic service times where the agent can skip a customer 
after arriving at his location (and observing the service time). The route 
is determined in advance, but the skipping decisions are made dynam
ically. Additionally, they devised a VNS heuristic inspired by Campbell 
et al. (2011). Zhang et al. (2018) extended Zhang et al. (2014) by 
allowing fully dynamic routing decisions and presented an approximate 
dynamic programming algorithm (ADP) for this problem. 

Angelelli et al. (2017) solved a variant of the static orienteering 
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problem with stochastic customers, where the route is determined a 
priori, but each customer may not be available with some known 
probability. They formulated the problem as a stochastic MIP and pre
sented a B&C as well as heuristic algorithms for the problem. Chou et al. 
(2021) solved a similar problem by means of a tabu search (TS) heuristic 
and used Monte Carlo sampling to evaluate the solutions. Angelelli et al. 
(2021) solved a dynamic version of the problem in which some service 
requests are mandatory and known in advance and some service re
quests may arrive over time and can be accepted or rejected. All the 
mandatory and accepted requests are served on the following day. 

Song et al. (2020) study a two-stage stochastic team orienteering 
problem with time windows (S-TOP-TW). In the first stage, a mandatory 
set of customers is assigned to vehicles. In the second stage, a new set of 
optional customers is revealed, and each such customer may be added to 
an existing route but without reallocating mandatory customers to ve
hicles. They formulated the problem as a two-stage stochastic integer 
program and solved the first stage using a multiple scenario approach 
(MSA) and the second stage using a branch-and-price approach. Kar
unakaran et al. (2019) studied a version of the S-TOP-TW where routes 
are dynamically determined and presented a hyper heuristic approach to 
solve the problem. 

2.3. Stochastic and time-dependent orienteering problems 

Lau et al. (2012) solved a variant of the orienteering problem where 
travel times are both stochastic and time-dependent (S-TD-OP) using a 
local search algorithm. They presented two approaches to calculate 
arrival time distributions – a sampling approach and a matrix-based 
approach. Varakantham and Kumar (2013) also studied the S-TD-OP 
and formulated it as a stochastic optimization program and as a deter
ministic program using SAA. The deterministic program can be solved 
by commercial solvers such as CPLEX. In a numerical experiment, they 
showed that the proposed method outperformed the LS algorithm of Lau 
et al. (2012). Varakantham et al. (2018) studied the S-TD-OP and pre
sented two deterministic formulations of the problem. The first relied 
upon the SAA technique, and the second relied on a heuristic approxi
mation of the parameters of the model. They solved the problem using 
an LS heuristic and CPLEX. 

Verbeeck et al. (2016) studied the stochastic time-dependent orien
teering problem with time windows (S-TD-OP-TW). The travel times 
were assumed to follow a normal distribution, while service times were 
assumed to be deterministic. The lower bounds of the hard time win
dows required the authors to devise an estimation algorithm to calculate 
the arrival times. The problem was solved using an ant colony algorithm. 
Numerical experiments showed the merit of considering time de
pendency and stochasticity compared to a deterministic 
time-independent case. Liao and Zheng (2018) studied a similar problem 
and devised a heuristic solution approach for it. 

Çelik (2021) studied the team orienteering problem with stochastic 
and time-dependent travel times (S-TD-TOP). The problem was formu
lated as a two-stage stochastic MIP, and an L-shaped algorithm was 
devised for its solution. 

2.4. Summary 

In this section, we summarize the three streams of literature on the 
stochastic and time-dependent orienteering problem reviewed earlier.  

Type of orienteering 
problem  

Time dependent Fomin and Lingas (2002), Verbeeck et al. (2014) Gunawan 
et al. (2014), Mei et al. (2016), Garcia et al. (2010), 
Abbaspour and Samadzadegan (2011), Verbeeck et al. 
(2017), Khodadadian et al. (2022), Peng et al. (2019), Peng 
et al. (2020), Li (2012), Garcia et al. (2013), Gavalas et al. 
(2014), Gavalas et al. (2015) 

(continued on next column)  

(continued ) 

Type of orienteering 
problem  

Stochastic Teng et al. (2004), Tang and Miller-Hooks (2005), Ilhan 
et al. (2008), Campbell et al. (2011), Papapanagiotou et al. 
(2014), Papapanagiotou et al. (2015), Dolinskaya et al. 
(2018), Panadero and Juan (2020), Evers et al. (2014), 
Gupta et al. (2015), Bian and Liu (2018), Zhang et al. 
(2014)). Zhang et al. (2018), Angelelli et al. (2017), Chou 
et al. (2021), Angelelli et al. (2021), Song et al. (2020), 
Karunakaran et al. (2019) 

Stochastic & time 
dependent 

Lau et al. (2012), Varakantham and Kumar (2013), 
Varakantham et al. (2018), Verbeeck et al. (2016), Liao and 
Zheng (2018), Çelik (2021)  

2.5. Contribution of this study 

This study is the first to consider an orienteering problem with sto
chastic travel times and soft time windows. We note that in stochastic 
settings, time windows with soft upper bounds may be more practical 
than those with hard upper bounds since it can be very restrictive to 
avoid late service under any possible scenario. 

Previous studies on stochastic and time dependent orienteering 
problems overlooked the interdependencies between the travel times of 
spatially or temporally close journeys. In this study, we model the sto
chasticity of the travel times and service times using a set of scenarios 
based on historical data. Such a modeling approach enables capturing 
the intricate interdependencies that appears naturally in practice. 

We present an exact solution method based on hybridization of a 
B&B and LS algorithms. A numerical experiment demonstrates the 
effectiveness of this method and the advantage of applying LS at some of 
the B&B nodes. Notably, while this approach is novel for the orien
teering literature, it is used by previous authors for scheduling and 
traveling salesperson problems; see, for example, Jiang et al. (2014). 

3. Problem definition 

The data-driven time-dependent orienteering problem with soft time 
windows (DD-TD-OP-STW) is stated as follows: A set of N customers, 
each bearing a prize, may or may not be served during a single working 
day by a single vehicle that departs and returns to a depot. The travel 
times among the locations and the service times at each customer are 
uncertain. Moreover, the travel time is time dependent, i.e., affected by 
the departure time. The uncertainty is modeled using a set of scenarios 
based on historically collected data. Each scenario specifies the service 
time at each customer and the travel time between each pair of locations 
in each time interval of the planning horizon. The planner assumes that 
each of these scenarios can occur with equal probability. Each customer 
has a time window for service beginning. If the vehicle arrives at a 
customer before the beginning of the time window, it waits until the 
window opens; if it arrives at the customer after the end of the time 
window, a penalty is incurred. The penalty is nondecreasing in the 
extent of the lateness. 

The goal is to select a subset of the customers and a sequence to visit 
them to maximize the total sum of prizes collected at the visited cus
tomers net of the expected penalty due to late arrivals. The vehicle 
returns to the depot at the end of the tour, but the return time is not 
considered since there is no time window associated with the depot. 
However, the trip from the last-served customer to the depot may or may 
not be implemented in practice. This model is suitable for many orga
nizations in the field service industry, where the length of the working 
day is implicitly defined by the closing time of the latest time window. 

Next, we formulate the problem as a nonlinear mathematical model. 
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3.1. Mathematical model 

3.1.1. Parameters  

{1,
…n}

Indices of the customers 

0 Index of the depot. We refer to {0,…, n} as the set of locations 
[ai,bi] Time window for the beginning of service for customer i 
K Number of scenarios 
sik The service time of customer i in scenario k 
pi The prize that can be collected if customer i is visited 
ti,j,k(τ) Travel time between location i and location j at departure time τ for the kth 

scenario. We assume that the travel times in each scenario follow the FIFO 
property. Moreover, we assume that the triangular inequality holds in the 
time-dependent setting. That is, ti,j,k(τ) ≤ ti,l,k(τ)+ tl,j,k(τ + ti,l,k(τ))∀i, j, l =

0,…,n,k = 1,…,K,τ. 
Gi(o) Penalty function for late start service at the customer’s location i. The 

exact shape of the penalty function is an input of this model and should be 
determined by the service level agreement between the provider and the 
customers. We assume that Gi(o) is a nondecreasing positive function of o 
and Gi(0) ≡ 0.  

3.1.2. Decision variables  

xij Binary variable that equals 1 if customer j is visited immediately after customer 
i 

uik The start of service time at location i in realization k, where u0k ≡ 0. If customer 
i is not visited the value of uik is zero. 

oik Lateness at customer i in realization k  

maximize
∑n

i=1
pi

∑n

j=0
xij −

1
K

∑n

i=1

∑K

k=1
Gi(oik) (1)  

subject to  

∑n

j=0
xij =

∑n

j=0
xji∀i= 0,…, n (2)  

∑n

j=0
xij ≤ 1∀i = 0,…, n (3)  

ujk ≥
(
uik + sik + ti,j,k(uik + sik)

)
xij∀i= 0,…, n; j= 1,…, n, k= 1…..K (4)  

ai

∑n

j=0
xij ≤ uik∀i = 1,…, n, k = 1…..K (5)  

bi

∑n

j=0
xij + oik ≥ uik∀i = 1,…, n, k = 1…..K (6)  

u0k = 0 k = 1,…K (7)  

xij ∈{0, 1}∀i, j = 0,…, n (8)  

oik ≥ 0∀i = 0,…, n; k = 1,…K (9) 

The model maximizes the overall collected prizes net of the expected 
penalty costs, that is, the expected net profit. The first term of the 
objective function is the collected prizes, which are not affected by the 
scenarios. The second term is the expected penalty cost calculated based 
on the assumption that each of the K scenarios has the same probability 
of occurrence. This assumption is reasonable when the scenarios are 
constructed from actual traffic data over a sample of several days. 
Constraint (2) maintains vehicle flow conservation. Constraint (3) stip
ulates that each location is visited at most once. Constraint (4) relates 
the start service times to the routing variables. Together with (2), it also 
eliminates subtours and stipulates that the resulting tour starts at the 
depot (node 0). Constraint (5) enforces hard lower bounds on the start 
service times of customers, while constraint (6) relates the lateness 

variables to the start service times. Note that for unvisited customers, the 
model sets uik = 0 and due to the optimization, oik = 0. Constraint (7) 
initializes the departure time from the depot, and Constraints (8) and (9) 
define the domains of the decision variables. 

In the appendix, we present a linearized version of the mathematical 
model (1)–(9). We note that this model can be solved for only tiny in
stances using a commercial solver; this is the motivation for the solution 
methods presented in Section 4. 

Note that any optimal solution to the DD-TD-OP-STW problem 
cannot contain customers with a negative expected net profit. If such a 
customer exists in the solution, removing her from the tour strongly 
increases the expected net profit related to her (to zero) and cannot 
increase the penalty of all the following customers. Indeed, due to the 
triangle inequality, the start service time at all these customers is not 
postpended. 

4. Methodology 

In this section, our approaches to solving the DD-TD-OP-STW are 
presented. First, we discuss an exact B&B algorithm that can solve in
stances of up to 30 customers. Then, we present an approach that hy
bridizes the B&B and a local search heuristic. The hybrid approach can 
produce near-optimal solutions in a short time. The concepts presented 
in this section are demonstrated graphically in the electronic appendix 
of this paper. 

4.1. B&B algorithm for the DD-TD-OP-STW 

B&B algorithms are commonly used to solve combinatorial optimi
zation problems, in particular, single vehicle routing problems (see 
Laporte and Martello (1990) and Ramesh et al. (1992) for orienteering 
problems). Our exact B&B algorithm is described in this section. 

Pseudocode of the algorithm is presented in Fig. 1. 
In lines 1–4, we define the properties of the root node of the B&B 

tree. Each node contains a sequence of the selected customers in the 
node (Sequence), a set of customers that may (or may not) be visited later 
in the tour (Eligible), and the upper bound of the node (UB). Customers 
that are not included in both Sequence and Eligible will not be visited in 
any of the descendants of the current node. In the list L we store the open 
nodes of the B&B tree. 

At the root node, Sequence is initialized as a list containing the depot 
only and the set Eligible as the list of customers. In line 2, Eligible is 
refined using the function CalcPotentialSuccessors (described below), 
which eliminates the customers who are not worth visiting given the 
current values of Sequence and Eligible. The upper bound for the root 
node, which is the initial global upper bound, is calculated using the 
function CalcUB (see detailed description below). 

Next, in line 5, an initial lower bound (GlobalLB), as well as an 
incumbent solution (Incumbent), are obtained using the function CalcLB 
that applies a heuristic method to obtain a feasible solution that extends 
the current sequence. Later in this section, we describe several imple
mentations of this function. 

In each iteration of the main loop (lines 6–24), one node from list L is 
removed and stored as (Sequence,Eligible,UB) (line 7). If the upper 
bound of the current node is greater than the global lower bound, the 
node is processed (line 8); otherwise, it is discarded. In line 9, the al
gorithm constructs a set of customers (PotentialImmediateSuccessors) that 
may immediately follow the last customer in the current tour (Sequence)
in any optimal solution. This is carried out by the function 
CalcPotentialImmediateSuccessors (see below). The algorithm branches 
on the customers in this set only. 

In the inner loop (lines 10–22), the algorithm creates the new po
tential nodes to be inserted into the tree (L). Each such node consists of a 
sequence that extends the current sequence by one of the customers in 
PotentialImmediateSuccessors (line 11). The new sequence is stored in 
NewSequnce. In line 12, an updated set of potential successors related to 
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the new sequence (NewEligible) is calculated using the function 
CalcPotentialSuccessors. In line 13, the algorithm applies the function 
CalcLB to obtain a heuristic solution that extends NewSequnce and 
returns its value as a lower bound. In line 14, a new upper bound for the 
node is calculated using the function CalcUB. 

If the upper bound of the new sequence is greater than the global 
lower bound (line 15), we create a new entry in L (line 16). The new 
entry contains the newly created sequence, new set of eligible cus
tomers, and the upper bound. If the lower bound of the sequence is 
greater than the best known lower bound (Line 18), the global lower 
bound and the incumbent solution are updated as their respective values 
for the node (lines 19–20). The process ends with an optimal incumbent 
solution when the list L is empty, i.e., all the nodes of the B&B tree have 
been explored or discarded. However, other stopping criteria may apply 
to obtain near-optimal solutions. 

L is implemented as a priority queue with the upper bound of each 
entry as its key. That is, in each iteration, the node with the largest upper 
bound is processed. Next, we describe the functions used by the algo
rithms in detail. 

All the functions obtain two arguments: Sequence and Eligible. The 
value of Sequence is an ordered set that describes the subroute already 
constructed in the current node. Eligible is a subset of customers not 
included in Sequence that includes all the customers not yet eliminated 
from the solution in the node. With respect to a given Sequence, we 
denote the last customer by i. The service completion time of customer i 
in scenario k is denoted by t′k. 

4.1.1. CalcpotentialSuccessors (sequence, eligible) 
The function returns a subset of the set Eligible consisting of cus

tomers who may be visited in an optimal solution after visiting the 
customers in Sequence. A customer is potentially profitable if their prize 
is greater than a lower bound on the expected delay penalty. Recall that 
to calculate the expected profit, we need to evaluate all the scenarios 
considering the time windows and the time-dependent travel times. 
Specifically, the function returns the set 

{j∈Eligible| pj >
1
K

∑K

k=1
Gj
(
max

(
0, t′k + ti,j,k

(
t
′

k

)
− bj

))

The travel times satisfy the triangular inequality, and the delay 
penalties are nondecreasing in the start service time. Therefore, if it is 
not profitable to visit a customer immediately after customer i, it is also 
not profitable to do so at any later leg of the tour. Hence, if a customer is 
not in the eligible set of a particular node in the B&B tree, it is also not in 
the eligible set of any of its descendent nodes. Thus, when a new node is 
created, the eligible set of its parent is refined using the 
CalcPotentialSuccessors function. 

4.1.2. CalcLB(Sequence, eligible) 
The function returns a solution that starts with Sequence and may 

contain some of the customers from Eligible along with the value of the 
solution. This value constitutes a lower bound for solutions that consist 
of Sequence possibly followed by some of the customers in Eligible. 

The function extends Sequence by greedily adding customers from 
Eligible. In each iteration, the customer with the highest expected net 
profit is added at the end of the current sequence. The process continues 
until it is not possible to add a customer with positive expected net 
profit. The expected net profit of a customer is calculated as the prize net 
of the average penalty over all the scenarios. For this purpose, the 
function maintains the start service time at each customer in each sce
nario. 

4.1.3. CalcUB(Sequence, eligible) 
The upper bound of a node given Sequnce and Eligible is obtained as 

the sum of the total prizes net of penalties collected when visiting the 
customers in Sequnce first and an upper bound on the net profit that can 
be collected from the customers in Eligible. The latter term is obtained as 
the solution of a maximum weight matching problem in a bipartite 
graph (U,V, E) where U = {i} ∪ Eligible (recall that i is the last customer 
in Sequence), and V = Eligible. The vertices in U represent possible 
customer origins in the future route of the vehicle, and the vertices of V 
represent possible customer destinations. 

Fig. 1. Pseudocode of the B&B algorithm.  
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To define the edges set, E, we first introduce the parameter δj1 ,j2 ,k that 
represents an upper bound on the net profit that can be gained by 
visiting customer j2 ∈ V after customer j1 ∈ U in scenario k in a solution 
that extends Sequence. 

For j1 = i, we define δi,j2 ,k = pj2 − Gj2 (max{t′k + tij2k(t
′

k) − bj2 ,0}). 
For j1 ∕= i, we define δj1 ,j2 ,k = pj2 − Gj2 (max{max(aj1 , t

′

k + ti,j1 ,k(t
′

k)) +

sj1k + tj1 j2k(max(aj1 , t
′

k + ti,j1 ,k(t
′

k)) + sj1k) − bj2 ,0}). 
Note that due to the triangle inequality and the FIFO property, the 

arguments of the penalty function Gj2 ( ⋅) in the calculation of δj1 ,j2 ,k are 
lower bounds on the start service time at customer j2 (if preceded by j1). 
Furthermore, since the penalty, Gj2 ( ⋅), is a nondecreasing function of the 
start service time at the customer, δj1 ,j2 ,k is an upper bound on the net 
profit from j2 when preceded by j1. 

The set of edges in (U,V,E) is obtained as follows: 

E =

{

(j1, j2)

⃒
⃒
⃒
⃒
⃒

j1 ∈U, j∈V, j1 ∕= j2,
∑K

k=1
δj1 ,j2 ,k > 0

}

This set defines all the ordered pairs of remaining customers (j1, j2)
for which it is still possible to obtain a positive expected profit by visiting 
j2 later than j1. 

The weight of each edge (j1, j2) in (U,V,E) is 

1
K

∑K

k=1
δj1 ,j2 ,k,

which equals the upper bound on the expected net profit from visiting j2. 
The upper bound on the expected net profit that can be collected 

from the remaining customers equals the value of the maximum weight 
matching of (U, V, E). Indeed, each visited customer from Eligible = V 
must be preceded by one of the customers from U. Any subroute starting 
at customer i that visits some of the remaining customers in Eligble can be 
mapped to a solution of the matching problem with a value equal to or 
greater than the net profit that can be obtained from visiting the sub
route. Finally, the function returns the value of the maximum weight 
matching problem plus the expected profit from Sequence as an upper 
bound on the maximal value of solutions that begins with Sequence. 

4.1.4. CalcpotentialImmediateSuccessors(Sequence, eligible) 
This function returns a set of customers that may follow customer i 

immediately in an optimal solution. This set is a subset of the set 
returned by CalcPotentialSuccessors because it applies additional 
reasoning to further eliminate customers from being immediately added 
to the route. 

The creation of the set of potential immediate successors relies on the 
concept of a local precedence relation introduced in Avraham and Raviv 
(2020) and explained here for completeness. 

For a given scenario k, we say that customer j1 (i, t
′

k, k)-locally pre
cedes customer j2 if after completing service at customer i at time t′k in 
scenario k it is possible to travel from i to j1, complete the service at j1, 
travel to j2 and arrive there before the opening of its service window, aj2 . 
The relation holds when the following inequality is true: 

max
(
t
′

k + tij1k
(
t
′

k

)
, aj1

)
+ sj1 + tj1 j2k

(
max

(
t
′

k + tij1k
(
t
′

k

)
, aj1

)
+ sj1

)
≤ aj2 

Moreover, if the inequality holds for all scenarios k = 1,…,K and 
corresponding t′ks, we say that j1 i-locally precedes customer j2. 

A given Sequence uniquely defines its last customer i and t′k for each of 
the scenarios. The function returns all the customers j2 in Eligible such 
that no other customer j1 ∈ Eligible i-locally precedes them. We quickly 
construct the output of the function by employing a preprocessing 
procedure to calculate the relation before launching the B&B algorithm. 
The technical details of this procedure are described in Avraham and 
Raviv (2020). 

4.2. Memoization 

We improved the performance of the B&B algorithm by applying 
considerations that arise from the observation of Lemma 1 below. 

Let S′ be a sequence of selected visited customers that ends with the 
current customer i, and let C′ represent the average penalties over all the 
scenarios accumulated up to the start service at customer i when the 
route follows S′ . Let S′′ represent an alternative sequence to S′ that visits 
the same customers in a different order and ends with the same customer 
i. C′′ denotes the accumulated average penalty in sequence S′′. Given a 
solution (a sequence) R, we denote the start service time at a particular 
customer j in scenario k by t(R, j,k). 

Lemma 1. If C′

≤ C′′ and t(S′

, i, k) ≤ t(S′′, i, k)∀k = 1,…,K, then the 
sequence S′ weakly dominates the sequence S′′. That is, there exists an 
optimal sequence that does not contain S′′ as a prefix. 

Proof: Consider two valid solutions of the DD-TD-OP-STW. The first 
solution is the sequence obtained as a concatenation of the sequences S’ and 
S, i.e., the route first visits the customers in S′ and then continues to the 
customers of S according to the order of these sequences. We denote this 
solution as S′

+ S. Similarly, the second solution is S′′ + S. We prove the 
Lemma by showing that the expected net profit of solution S′′ + S is no greater 
than the expected net profit of S′

+ S. 
Let j denote the first customer in S. For customer j, 

t(S′

+S, j, k) = max (aj, t(S
′

+S, i, k)+sik +ti,j,k(t(S
′

+S, i, k)+sik)) and 
t(S′′ +S, j, k) = max (aj, t(S′′ +S, i, k)+sik +ti,j,k(t(S′′ +S, i, k)+sik)). Since 
the FIFO property in the time-dependent setting ensures that no later depar
ture from origin i can result in an earlier arrival at destination j, 
t(S′

+S, i, k) + sik + ti,j,k(t(S
′

+S, i, k)+sik) ≤ t(S′′ +S, i, k) + sik + ti,j,k(t(S′′
+S, i, k)+sik); thus, t(S′

+S, j, k) ≤ t(S′′ +S, j, k)∀k = 1,…,K. A similar 
argument can be used for all the customers in S; i.e., t(S′

+ S,p,k) ≤ t(S′′ + S,
p,k)∀k = 1,…,K,p ∈ S. 

Recall that Gj(x) is nondecreasing in x. Thus, for each customer p, the 
penalty incurred when following the sequence S′

+ S is no greater than the 
penalty incurred when following the sequence S′′ + S. Since C′

≤ C′′, the total 
expected penalty when following the sequence S′

+ S is no greater than the 
expected penalty when following the sequence S′′ + S. Moreover, since the 
sum of prizes is the same for both S′

+ S and S′′ + S, the net profit of the 
solution S′

+ S cannot be smaller than the net profit of S′′ + S. Therefore, 
there exists an optimal route that does not begin with S′′. ∎. 

We use Lemma 1 to enhance the B&B algorithm. When the algorithm 
explores a node, it uses memoization to check if previous nodes dominate it in 
the sense of Lemma 1. Branches of dominated nodes are pruned. Non
dominated nodes are stored in a hash table, and previously stored nodes that 
are dominated by the current node are deleted from the table. In our pre
liminary numerical experiment, the memorization mechanism significantly 
reduced the size of the B&B tree and the running time of the algorithm. 

4.3. Hybrid B&B - local search heuristic 

In this section, we present a local search (LS) heuristic and integrate 
it into our B&B procedure. We begin with the presentation of the LS 
heuristic and discuss its hybridization at the end of the section. The LS 
heuristic is designed to improve the solutions that are generated at each 
node while the B&B algorithm runs and thus to find good incumbent 
solutions in a short time. Its input consists of three components: (1) an 
initial solution denoted by CandSolution and obtained from the greedy 
algorithm described in Section 4.1, (2) the sequence of selected cus
tomers in the node, denoted by Sequnce, that cannot be modified 
(Sequnce is a prefix of CandSolution), and (3) a set of customers that may 
(or may not) be visited later in the tour, denoted by Eligible. It returns a 
solution whose value is no worse than the value of CandSolution. 

The heuristic begins its search with an initial current solution that is 
set as CandSolution. Next, it finds a set of solutions that can be created 
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from the current solution by some (simple) manipulations (the neigh
borhood of the current solution) and evaluates their values. In each 
iteration, the entire neighborhood is scanned; if an improved solution is 
found, the current solution is updated to the best found solution, and the 
process is repeated. Otherwise, the search ends, and the current solution 
is returned. Next, further details related to the components of the heu
ristic are described. 

4.3.1. Neighborhood 
Recall that any valid solution (and related lower bound) to a node 

with a sequence of selected customers Sequnce must contain Sequnce as a 
prefix. This is guaranteed for the solution received in the input of the 
heuristic (CandSolution, see Section 4.1). We denote the suffix of 
CandSolution that contains all the customers not in Sequnce by S′ . Next, 
the neighborhood related to a current solution is defined to maintain this 
property. The neighborhood is constructed as the union of the following 
three sets: 

Replace Solutions generated from replacing one of the customers of 
S′ with a customer from Eligible. 

Insert Solutions generated from inserting one of the customers from 
Eligible into S′ or immediately before or after it. 

Reposition Solutions generated by changing the position of one of 
the customers of S′ to a different position within S′ . 

Note that while the replace and insert operations may affect both the 
total sum of the prizes and the total penalty, the reposition operation 
changes only the total penalty in the solution. 

4.3.2. Improvement of generated solutions 
Recall that an optimal solution of DD-TD-OP-STW cannot contain 

customers with a negative expected net profit. Therefore, each solution 
in the neighborhood of the current solution undergoes a simple iterative 
improvement process. In each iteration, the earliest customer in the 
sequence whose expected net profit is negative is identified and removed 
from the sequence. The process ends when all visited customers yield a 
positive expected net profit. 

4.3.3. Memoization 
Recall that evaluation of the value of a given solution (a sequence of 

customers) is computationally expensive since we need to calculate the 
average penalty cost over all scenarios. To reduce the running time 
required for these evaluations, we store all the encountered solutions 
during the local search along with their values. Thus, although each 
solution may be encountered many times, it is only evaluated once. 

4.3.4. Integration in the B&B algorithm 
The local search heuristic is embedded into the B&B algorithm to 

obtain better lower bounds than those generated by the greedy algo
rithm (described in Section 4.1). Since the local search procedure is 
typically computationally intense, we apply it only in the following two 
cases: (1) at the root node, for the sake of achieving an initial good 
incumbent solution, and (2) whenever the gap (in percentage) between 
the lower bound obtained by the simple greedy algorithm and the global 
lower bound (see Section 4.1) is smaller than some optimality gap, 
denoted as α. That is, when 

GlobalLB
NewLB

− 1 ≤ α 

Hence, if a new best-known solution is obtained and NewLB >

GlobalLB, the local search procedure is initiated to further improve the 
new solution. 

Note that as the B&B algorithm runs, GlobalLB improves; thus, the 
probability that the local search procedure will yield solutions that 
outperform it decreases. Therefore, we gradually reduce the value of α. 
That is, the initial value of α is set at some value, denoted as α0, and 
every Ω times the LS is applied, α is updated as α←αω, where 0 < ω < 1 

represents a reduction factor. 

5. Numerical experiments 

In this section, we evaluate the performance of the proposed B&B 
strategy and its enhancement (hybridization with LS). Since this is the 
first study on the data-driven time-dependent orienteering problem with 
soft time windows (DD-TD-OP-STW), it is not possible to compare our 
results with those of previous studies. Therefore, we report the solution 
times for a set of instances that could be solved to optimality in 
reasonable time consistently and the optimality gap of larger and harder 
instances with a time limit of 24 h. 

Section 5.1 presents the problem instances in our benchmark dataset; 
Section 5.2 reports our results and discusses their implications. 

5.1. Problem instances and setup 

The set of problem instances is based on time-dependent travel time 
data between 60 locations in central Israel. The input consists of 40 
actual scenarios of travel times between each pair of locations for each 
interval of 1 min during the working day. Details about the procedure 
used to collect and process the data from Google Maps are available in 
Avraham and Raviv (2020). The data are available by request from the 
first author. 

We created problem instances with 24, 30 and 54 customers: twenty 
instances of each size were created. The customer service times in each 
of the 40 scenarios of each instance were randomly generated such that 
the total average time required to serve all the customers was approxi
mately 7 h a day. Across all scenarios, the service times ranged from 3 to 
57 (resp., 2–47) minutes in the 24 (resp., 30) customer instances. The 
values were drawn from a lognormal distribution. The range of the 
prizes was 8–35 (resp. 7–29) in the 24 (resp., 30) customer instances. 
Each customer was assigned to one of six nonoverlapping time windows 
of 90 min each (over a planning horizon of 9 h), such that the customers 
were equally divided among the intervals. The prize, pi, for each 
customer was set as his average service time over all scenarios. The 
penalty function (for starting the service after the end of the time win
dow) was set to Gi(o) = pio2, where o is the lateness in hours. We 
selected this function because it is convex (long delays are much more 
costly than short ones), and the penalty is also associated with the prize, 
which is a proxy for the value of the customer. However, our solution 
methods can be applied to any nondecreasing penalty function. 

In this section, we refer to the Hybrid B&B algorithm as HYBRID and 
to the B&B algorithm that is not enhanced with a local search heuristic at 
the nodes as STANDARD. We also compare the results to the solution 
obtained by our naïve local search heuristic applied at the root node of 
HYBRID. This algorithm is denoted as LS. 

The algorithms were implemented as single-threaded applications in 
Python 2.7 and tested on an Intel i9-9900K 3.6 GHz desktop with 64 GB 
RAM running Ubuntu Linux 18.04 using a PyPy interpreter that imple
ments a just-in-time compiler. 

5.2. Results 

Both the standard and hybrid B&B algorithms were applied to the 60 
instances described above with a time limit of 24 h. Following some 
preliminary experiments, the tuning parameters of the hybrid algorithm 
were set to α0 = 0.1, Ω = 100 and ω = 0.99. In our preliminary 
experiment, we tested the hybrid algorithm with 24 and 30 customer 
instances (20 instances each) with Ω = 100 and Ω = 200. The Ω = 100 
performed better on average for both sizes, although the solution times 
of the 30 customer instances took much longer times than the 24 
customer instances. The difference was not large but statistically sig
nificant for both problem sizes. We concluded that at least for the 
instance sizes that we tested, the algorithm’s performance is not very 

E. Avraham and T. Raviv                                                                                                                                                                                                                     



EURO Journal on Transportation and Logistics 12 (2023) 100112

8

sensitive to the value of Ω. However, if the algorithm is to be imple
mented repeatedly in a particular setting, it would be advisable to fine 
tune these parameters. 

Table 1a-c report the results of the experiments for the instances with 
24, 30, and 54 customers. The leftmost column displays the instance 
number. Next, the optimality gap of the LS solution is presented as a 
baseline to compare the performance of the more intricate B&B algo
rithms. Moreover, for the standard B&B and the hybrid B&B, the 
following are presented: total running time, the time to encounter the 
best-known solution, and the optimality gap after 10 min and after 24 h. 
Notably, all optimality gaps were calculated based on the tightest upper 
bound found for each instance by the two exact algorithms after 24 h. 
That is, the optimality gaps were obtained as BestUB− Sol

Sol , where BestUB 
denotes the tightest upper bound and Sol denotes the value of the so
lution. The last four rows of the table present summary statistics of the 
information in the tables. 

Table 1a shows that all instances with 24 customers were solved to 
optimality within a 24-h time limit. While HYBRID requires, on average, 
somewhat longer time to prove the optimality of a given solution, it 
greatly reduces the time needed to encounter an optimal solution. The 
average time is reduced from approximately 1000 s–123 s. This differ
ence is statistically significant, with a p value = 0.006 in a one-sided 
paired t-test. 

The two exact algorithms provide a near optimal solution after 10 
min of running time for the instances with 24 customers. In fact, HYBRID 
always found an optimal solution in less than 10 min, while STANDARD 
failed to find one in some instances. Compared with our naïve LS heu
ristic, both B&B methods deliver significantly better solutions (p value 
= 0.015 when compared to STANDARD and p value < 0.0001 when 
compared to the HYBRID in a paired one-sided t-test). 

Table 1b shows that when the dimensionality of the instances is 
increased, the advantage of HYBRID becomes more prominent. Seven of 
the twenty instances with 30 customers could not be solved to optimality 
within 24 h, or at least the two algorithms could not prove optimality. 
For five of these instances, HYBRID yields better solutions than 
STANDARD. 

When observing the instances solved to optimality, we note that 

incorporating the local search heuristic into the B&B procedure 
increased the time to reach proven optimality but greatly reduced the 
time to encounter the optimal solution. Moreover, for these larger in
stances, HYBRID delivers much better solutions than STANDARD when 
stopped after 10 min. Interestingly, the naïve LS heuristic also out
performs STANDARD. All the above statements are statistically signifi
cant, with p value < 0.0014. 

In Table 1c, to explore the limitations of our algorithm, we present 
the same results for the 54 instances. None of the instances were solved 
to optimality or near optimality. The pure B&B algorithm provided so
lutions with an average optimality gap of 82.50%, and our hybrid al
gorithm ended with an optimality gap of 16.90%. However, in all 20 
cases, the hybrid algorithm found the best solution after a few minutes 
by running a local search at the root node. The rest of the 24 h were used 
only to tighten the upper bound. This finding motivates the future 
development of advanced local search heuristics for the problem (e.g., 
ALNS). 

Table 2 presents an analysis of the special features of HYBRID. For 
each set of instances, we present the total number of local searches 
initiated, the number of successful local searches and the percentage of 
solution evaluations saved during the LS processes due to the memo
ization. Notably, successful local searches are defined as searches initi
ated at nodes that result in a solution better than the current best-known 
solution. 

In Table 2, we observe that only a small fraction of the local searches 
actually find new best-known solutions. However, we observed earlier 
that these searches significantly shorten the time needed for the B&B 
procedure to find near-optimal solutions. This finding highlights the 
effectiveness of the hybridization of LS, and possibly other fast heuris
tics, with B&B procedures and calls for considering such enhancement of 
the B&B, especially in hard problems where the calculation of the 
bounds at each node is expensive, for example, when the evaluation of 
multiple scenarios is needed. 

As expected, the algorithm initiates a greater number of searches 
when solving larger instances. Finally, the merits of memoization are 
evident. Approximately 19% of all solution evaluations during the LS 
runs can be saved by reusing stored results. 

Table 1a 
Performance of the two algorithms for instances with 24 customers.  

Inst. LS STANDARD HYBRID 

Opt. 
Gap 

Running time 
(s) 

Time to encounter best known 
solution (s) 

Gap 
10 m 

Gap after 
24 h 

Running time 
(s) 

Time to encounter best known 
solution (s) 

Gap 
10 m 

Opt. 
Gap 
24 h 

1 0.00% 247.5 237.6 0.0% 0.0% 306.4 2.4 0.0% 0.0% 
2 0.00% 4,894.7 31.5 0.0% 0.0% 5,016.3 85.4 0.0% 0.0% 
3 0.00% 702.6 58.5 0.0% 0.0% 827.3 2.3 0.0% 0.0% 
4 4.71% 314.6 83.0 0.0% 0.0% 452.5 85.3 0.0% 0.0% 
5 1.87% 1,128.5 1,128.4 1.63% 0.0% 1,366.6 11.6 0.0% 0.0% 
6 1.21% 704.3 704.3 0.81% 0.0% 864.0 227.2 0.0% 0.0% 
7 2.21% 613.6 319.1 0.0% 0.0% 835.9 90.4 0.0% 0.0% 
8 0.02% 270.6 270.5 0.0% 0.0% 384.5 7.3 0.0% 0.0% 
9 2.55% 546.1 144.2 0.0% 0.0% 670.2 104.5 0.0% 0.0% 
10 2.08% 3,132.0 2,227.4 2.53% 0.0% 3,597.7 178.2 0.0% 0.0% 
11 1.49% 879.9 553.3 0.0% 0.0% 1,114.3 12.2 0.0% 0.0% 
12 0.47% 5,021.3 5,021.1 1.65% 0.0% 5,705.3 163.5 0.0% 0.0% 
13 0.31% 118.6 118.6 0.0% 0.0% 158.1 121.0 0.0% 0.0% 
14 1.59% 4,076.0 4,075.6 1.46% 0.0% 4,738.6 149.1 0.0% 0.0% 
15 0.05% 3,331.4 745.3 0.54% 0.0% 3,852.7 9.5 0.0% 0.0% 
16 1.24% 3,472.9 2,895.1 2.82% 0.0% 4,078.5 463.5 0.0% 0.0% 
17 3.56% 389.4 164.2 0.0% 0.0% 517.8 228.7 0.0% 0.0% 
18 4.31% 1,944.6 357.7 0.0% 0.0% 2,211.4 32.3 0.0% 0.0% 
19 0.88% 1,095.2 615.6 0.17% 0.0% 1,455.9 376.8 0.0% 0.0% 
20 1.11% 451.3 261.9 0.0% 0.0% 616.3 108.4 0.0% 0.0% 

average 1.48% 1,666.8 1,000.6 0.58% 0.0% 1,938.5 123.0 0.0% 0.0% 
median 1.22% 792.1 338.4 0.00% 0.0% 989.2 97.5 0.0% 0.0% 
min 0.00% 118.6 31.5 0.00% 0.0% 158.1 2.3 0.0% 0.0% 
max 4.71% 5,021.3 5,021.1 2.82% 0.0% 5,705.3 463.5 0.0% 0.0%  
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5.3. Comparison between the B&B and local search solutions 

In this section, we compare the characteristics of the results per
taining to the solutions obtained via the two methods: Hybrid B&B and 
LS. We focus on the 24 customer instances where we can solve all the 
instances to optimality with the B&B method. In Table 3, we present the 
breakdown of the objective function value to the prizes and the lateness 
penalty components as well as the average lateness per visited customer. 
The objective function values are also presented, and optimal solutions 

are in bold font. 
It is apparent from the table that the optimal solutions (obtained via 

B&B) are on average approximately 1.5% better than those obtained via 
LS and that the average improvement stems from both the penalty and 
prizes components. However, in some particular instances, the optimal 
solution incurs much higher expected penalties than the LS solutions. In 
both cases, the penalties are responsible for only 2.7–3% of the objective 
function, which shows that the optimal and near-optimal solutions 
prevent misses of the time windows most of the time. 

Table 1b 
Performance of the two algorithms for instances with 30 customers.  

Inst. LS STANDARD HYBRID 

Opt. 
Gap 

Running time 
(s) 

Time to encounter best known 
solution (s) 

Gap 
10 m 

Gap after 
24 h 

Running time 
(s) 

Time to encounter best known 
solution (s) 

Gap 
10 m 

Opt. 
Gap 
24 h 

1 1.23% 3,374 1,778 15.52% 0.0% 4,165 2,312 1.23% 0.0% 
2 1.38% 11,866 4,845 24.83% 0.0% 13,968 2,850 1.38% 0.0% 
3 3.77% 86,400 84,764 16.07% 5.4% 86,400 5,998 3.77% 3.4% 
4 2.56% 18,361 18,358 35.99% 0.0% 20,955 10,416 2.56% 0.0% 
5 0.00% 66,100 44,226 5.06% 0.0% 70,925 7 0.00% 0.0% 
6 4.74% 7,525 7,525 20.05% 0.0% 8,767 8,767 4.74% 0.0% 
7 0.56% 51,871 38,409 14.32% 0.0% 61,615 1,560 0.56% 0.0% 
8 1.48% 33,057 33,053 31.84% 0.0% 36,953 36,952 1.48% 0.0% 
9 1.42% 4,943 1,120 0.18% 0.0% 5,575 259 0.00% 0.0% 
10 0.81% 86,400 50,680 3.00% 0.7% 86,400 53,559 0.73% 0.7% 
11 1.04% 21,344 21,341 11.71% 0.0% 26,575 3,916 1.04% 0.0% 
12 9.28% 86,400 19,271 19.29% 9.1% 86,400 1,478 9.28% 8.0% 
13 1.34% 41,271 41,266 7.68% 0.0% 47,597 1,062 0.21% 0.0% 
14 0.50% 48,434 6,911 19.87% 0.0% 50,591 6,792 0.50% 0.0% 
15 8.46% 86,400 25,083 14.69% 6.1% 86,400 23,558 6.80% 5.1% 
16 5.72% 86,400 85,611 8.78% 4.9% 86,400 62,329 4.69% 4.4% 
17 2.81% 86,400 63,657 6.28% 1.0% 86,400 511 0.82% 0.8% 
18 2.26% 60,318 45,608 14.00% 0.0% 68,316 8,269 2.26% 0.0% 
19 3.07% 86,400 7,052 14.18% 1.7% 86,400 1,143 3.07% 1.7% 
20 0.28% 82,762 19,657 41.43% 0.0% 84,646 8,010 0.28% 0.0% 

average 2.64% 52,801 31,011 16.24% 1.4% 55,272 11,987 2.27% 1.2% 
median 1.45% 56,095 23,212 14.50% 0.0% 64,965 4,957 1.30% 0.0% 
min 0.00% 3,374 1,120 0.18% 0.0% 4,165 7 0.00% 0.0% 
max 9.28% 86,400 85,611 41.43% 9.1% 86,400 62,329 9.28% 8.0%  

Table 1c 
Performance of the two algorithms for the instances with 54 customers.  

Inst. LS STANDARD HYBRID 

Opt. 
Gap 

Running time 
(s) 

Time to find best known 
solution (s) 

Gap 
10 m 

Gap after 24 
h 

Running time 
(s) 

Time to find best known 
solution (s) 

Gap 
10 m 

Opt. 
Gap 
24 h 

1 16.06% 86,400 68,662.42 162.01% 77.04% 86,400 106.57 16.06% 16.06% 
2 15.73% 86,400 23,901.74 162.68% 57.28% 86,400 123.04 15.73% 15.73% 
3 22.11% 86,400 84,917.22 99.61% 87.05% 86,400 101.30 22.11% 22.11% 
4 17.37% 86,400 85,751.65 123.64% 104.67% 86,400 110.67 17.37% 17.37% 
5 17.93% 86,400 79,582.35 147.59% 116.42% 86,400 117.92 17.93% 17.93% 
6 14.68% 86,400 86,098.36 156.62% 58.72% 86,400 140.23 14.68% 14.68% 
7 17.01% 86,400 82,721.94 141.08% 122.40% 86,400 155.95 17.01% 17.01% 
8 13.60% 86,400 69,859.47 212.90% 58.07% 86,400 176.57 13.60% 13.60% 
9 14.62% 86,400 79,244.39 100.18% 52.27% 86,400 145.26 14.62% 14.62% 
10 15.03% 86,400 86,215.88 195.00% 67.90% 86,400 148.43 15.03% 15.03% 
11 21.81% 86,400 80,104.09 138.18% 121.03% 86,400 127.40 21.81% 21.81% 
12 18.62% 86,400 77,567.05 119.30% 96.28% 86,400 175.62 18.62% 18.62% 
13 12.75% 86,400 74,675.68 153.40% 58.03% 86,400 161.23 12.75% 12.75% 
14 20.58% 86,400 69,505.37 109.98% 96.06% 86,400 95.27 20.58% 20.58% 
15 17.06% 86,400 66,404.10 177.83% 75.71% 86,400 113.11 17.06% 17.06% 
16 14.68% 86,400 85,589.89 180.36% 58.02% 86,400 100.54 14.68% 14.68% 
17 24.76% 86,400 61,903.11 135.46% 112.76% 86,400 102.09 24.76% 24.76% 
18 13.32% 86,400 61,562.02 114.64% 98.51% 86,400 151.43 13.32% 13.32% 
19 16.50% 86,400 84,551.96 135.64% 75.75% 86,400 122.40 16.50% 16.50% 
20 13.74% 86,400 74,056.38 122.15% 56.01% 86,400 126.19 13.74% 13.74% 

average 16.90% 86,400 74,143.75 144.41% 82.50% 86,400 130.06 16.90% 16.90% 
median 16.28% 86,400 78,405.72 139.63% 76.40% 86,400 124.61 16.28% 16.28% 
min 12.75% 86,400 23,901.74 99.61% 52.27% 86,400 95.27 12.75% 12.75% 
max 24.76% 86,400 86,215.88 212.90% 122.40% 86,400 176.57 24.76% 24.76%  
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In Table 4, we provide information about the similarity of the solu
tions obtained via the two methods. For each instance, we present.  

• The number of customers visited under the solution.  
• The cardinality of the symmetric difference between the sets of 

visited customers. That is, the number of customers visited under one 
of the solutions but not under the other  

• The average offset in the positions of the customers visited under the 
two solutions.  

• The number of customers visited under the two solutions.  
• The number of customers visited under the two solutions at the same 

position in the sequence. 

We observe in the table that the solutions obtained by the two 
methods are very similar in nature. Both include approximately 20 
customers on average. The symmetric difference is 2.55 on average, 
meaning that the two solutions share most of the visited customers, and 
the sequence is similar, with an average offset of 0.67. On average, the 
solutions have 18.45 customers in common, and more than 10 are in the 
same position in the sequence. 

5.4. Comparison with simpler models 

As we observed in the previous sections, the DD-TD-OP-STW prob
lem is an intricate routing problem that takes into account both the time 
dependency and stochasticity of travel times. It creates a sequence of 

Table 2 
Local search heuristic measures.  

Instance Instances with 24 Customers Instances with 30 Customers 

Number of local 
searches initiated 

Number of successful 
local searches 

% of LS solution 
evaluations saved 

Number of local 
searches initiated 

Number of successful 
local searches 

% of LS solution 
evaluations saved 

1 1,432 1 21.2% 7,173 6 22.43% 
2 9,743 1 18.4% 8,528 4 18.73% 
3 9,284 1 16.4% 4,256 2 16.08% 
4 8,643 7 20.8% 11,310 8 18.66% 
5 5,621 5 23.2% 8,180 1 22.76% 
6 1,619 4 18.3% 6,653 9 19.24% 
7 5,300 4 21.4% 11,386 3 19.20% 
8 2,758 2 22.6% 5,711 6 18.79% 
9 1,410 4 18.8% 15,055 5 20.57% 
10 4,934 6 16.5% 15,080 5 15.55% 
11 6,705 3 21.6% 8,846 4 20.12% 
12 6,134 2 18.9% 11,636 5 17.28% 
13 556 3 21.1% 10,090 4 21.23% 
14 6,980 3 17.9% 17,295 5 15.87% 
15 11,190 2 15.8% 10,235 5 13.88% 
16 6,593 4 17.2% 13,021 8 13.82% 
17 5,628 4 21.7% 11,983 5 17.15% 
18 9,987 2 21.1% 6,890 3 19.22% 
19 7,139 4 17.4% 18,188 3 18.79% 
20 4,190 4 20.9% 15,384 2 19.16% 

average 5,792 3.3 19.6% 10,845 5 18.43% 
median 5,881 3.5 19.9% 10,773 5 18.79% 
min 556 1 15.8% 4,256 1 13.82% 
max 11,190 7 23.2% 18,188 9 22.76%  

Table 3 
Breakdown of the objective function under both solution methods.  

Inst. LS solution (Heuristic) Hybrid branch & bound (Optimal) 

Total 
prizes 

Total lateness 
penalty 

Net profit (Objective 
function) 

Average lateness 
(min.) 

Total 
prizes 

Total lateness 
penalty 

Net profit (Objective 
function) 

Average lateness 
(min.) 

1 13,880 204.34 13,675.66 1.77 13,880 204.34 13,675.66 1.77 
2 14,400 312.48 14,087.52 2.68 14,400 312.48 14,087.52 2.68 
3 14,880 732.66 14,147.34 5.37 14,880 732.66 14,147.34 5.37 
4 13,440 542.99 12,897.01 4.94 14,240 735.80 13,504.20 5.73 
5 13,720 241.63 13,478.37 2.57 14,040 309.86 13,730.14 3.53 
6 13,240 296.12 12,943.88 2.94 13,360 259.40 13,100.60 2.23 
7 13,760 705.29 13,054.71 5.02 13,600 256.47 13,343.53 2.77 
8 14,080 169.23 13,910.77 1.67 14,080 166.01 13,913.99 1.67 
9 13,720 533.80 13,186.20 4.77 14,240 717.55 13,522.45 5.97 
10 13,880 437.34 13,442.66 3.66 14,040 318.32 13,721.68 2.61 
11 14,000 594.92 13,405.08 4.40 14,000 395.81 13,604.19 3.10 
12 14,920 404.23 14,515.77 2.45 14,920 336.07 14,583.93 2.21 
13 12,600 369.31 12,230.69 4.42 12,400 131.47 12,268.53 2.14 
14 14,520 209.06 14,310.94 1.92 14,800 261.51 14,538.49 1.82 
15 14,400 411.04 13,988.96 4.08 14,480 483.75 13,996.25 4.80 
16 14,000 283.67 13,716.33 2.29 14,200 313.95 13,886.05 2.54 
17 14,480 330.64 14,149.36 3.71 15,200 546.58 14,653.42 4.79 
18 13,680 819.00 12,861.00 5.23 14,040 624.99 13,415.01 4.19 
19 13,960 551.36 13,408.64 5.58 13,960 432.84 13,527.16 4.83 
20 13,480 163.11 13,316.89 2.24 13,600 134.83 13,465.17 1.58 
Average 13,952 415.61 13536.39 3.59 14,118 383.73 13,734.27 3.32  
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customer visits that optimally balances the expected sum of prizes and 
penalties. The former represents the revenue of the service provider, and 
the latter represents the service level. 

In a soft time-window setting, any sequence of customers is a feasible 
solution, and even when reality is noisy and time dependent, a solution 
method that ignores time dependence and stochasticity yields a solution 
that can be used in practice. For example, travel times can be set to be 
deterministic and fixed over time, deterministic but time dependent or 
stochastic (represented by a set of scenarios) and derived from the same 
distribution independent of departure time. These simplifications result 
in three special cases of the DD-TD-OP-STW, which are denoted as OP- 
STW, TD-OP-STW, and DD-OP-STW. Solutions obtained via such 
simpler approaches are likely to incur more penalties when applied in 
practice, but obliviousness to this risk may lead to the collection of more 
prizes. We note that the solution times of the OP-STW and TD-OP-STW 
are about 40 times shorter while the running DD-OP-STW is about half of 
the full DD-TD-OP-STW model. 

Whether the extra effort required to solve the richer model pays off is 
an interesting question. To this end, we solve the 20 instances of 24 
customers using the above four orienteering models and calculate the 
value of their solutions in the stochastic time-dependent environment 
represented by our 40 scenarios. For each solved instance, we calculate 
the relative gap between the solution value (expected net profit) of each 
of the simpler models and that of the full model. We also repeat this 
calculation for the two components of the objective function, namely, 
the total prizes and the expected total penalties. In Table 5, we present 
the average and ranges of these relative gaps. A positive gap value im
plies that the focal model lags behind the full one. Negative gaps imply 
that the simpler model outperforms the full model. 

It is apparent from the table that the average penalty incurred by the 
service provider is significantly higher in the simpler models, especially 
when both time dependence and stochasticity are ignored. However, as 
expected, the provider is able to collect more prizes. The full model 

features a 0.96% gain on average compared with the OP-STW model. 
The average gaps are smaller when a complicating property (either time 
dependence or stochasticity) is introduced. 

6. Conclusions and future research 

This is the first study to consider the data-driven time-dependent 
orienteering problem with soft time windows. While the orienteering 
problem and its variants are well studied, the challenge of planning an 
optimal orienteering tour in a realistic environment where travel times 
are unknown and time dependent has been largely overlooked. 

Our approach to modeling randomness is based on optimizing the 
route with respect to multiple representative scenarios collected from 
recent historical data. Recent advances in geographical information 
technology have made historical data on travel times on any possible 
route readily available, for example, from services such as Google Maps. 
Moreover, using historical scenarios enables the planner to capture the 
spatial and temporal interdependencies in such a way that cannot be 
accomplished by fitting a known joint distribution to the travel times. 

We presented an enhanced B&B algorithm to solve the problem and 
showed that it can be used to solve instances with up to 30 customers 
and 40 scenarios in a reasonable time. We demonstrate numerically that 
enhancing the B&B algorithm by integrating a local search procedure at 
the nodes can significantly accelerate convergence to a near-optimal 
solution. 

We believe that future research on DD-TD-OP-STW should focus on 
developing heuristics that can deliver high-quality solutions in a short 
time. Such heuristic methods can be used as building blocks for methods 
to solve the equivalent team orienteering problem. Another interesting 
direction for research is to consider a dynamic version of the problem 
where the route is determined during its execution as partial informa
tion about the stochastic parameters is revealed. 

Table 4 
Similarity between the visit sequence under the two solution methods.  

Inst. Customers under optimal 
solution 

Customers under LS 
solution 

Symetric 
difference 

Average 
offset 

Customers under both 
solutions 

Customers in the same 
position 

1 20 20 0 0.00 20 20 
2 20 20 0 0.00 20 20 
3 20 20 0 0.00 20 20 
4 21 19 8 0.88 16 5 
5 21 20 5 1.33 18 4 
6 19 19 2 0.39 18 11 
7 21 21 2 0.95 20 8 
8 21 21 0 0.86 21 10 
9 20 19 1 1.53 19 6 
10 19 18 3 0.35 17 12 
11 21 20 3 1.21 19 3 
12 19 19 0 0.42 19 15 
13 20 20 2 0.11 19 17 
14 20 19 3 0.56 18 8 
15 19 19 2 0.50 18 15 
16 19 18 5 0.50 16 8 
17 21 19 6 1.24 17 0 
18 20 19 3 1.61 18 0 
19 19 19 2 0.78 18 8 
20 20 20 4 0.22 18 14 
Average 20 19.45 2.55 0.67 18.45 10.20  

Table 5 
The DD-TD-OP-STW model versus simpler models.  

Model Net profit Sum of prizes Penalties 

Average Min Max Average Min Max Average Min Max 

OP-STW 0.96% 0.00% 3.80% − 1.25% − 4.12% 0.84% 111.84% − 14.90% 545.17% 
TD-OP-STW 0.47% 0.00% 2.16% − 1.15% − 3.87% 0.84% 85.45% − 14.90% 373.72% 
DD-OP-STW 0.34% 0.00% 1.53% − 0.62% − 4.12% 0.84% 55.53% − 15.08% 509.51%  
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Appendix. linear formulation of the problem 

Using the same parameters as those used in Section 3 and an upper bound, T, on the latest time of start service at a customer, we formulate the DD- 
TD-OP-STW problem using the following decision variables: 

xij Binary variable that equals 1 if customer j is visited immediately after customer i. 
uijkt Binary variable that equals 1 if the vehicle departs from customer i to customer j at time t in scenario k.. 
The decision variables uijkt define the arcs of K copies of a time-expanded graph, one for each scenario. Our problem can be viewed as finding a path 

that visits some customers on each copy in the same sequence across all scenarios. 

maximize
∑n

i=1
pi

∑n

j=0
xij −

1
K

∑n

i,j=1

∑K

k=1

∑T

t=bi+sik+1
Gi(t − sik − bi)uijkt (10)  

subject to  

∑n

j=0
xij =

∑n

j=0
xji∀i= 0,…, n (11)  

∑n

j=0
xij ≤ 1∀i = 0,…, n (12)  

∑T

t=ai+sik

uijkt = xij∀i, j = 0,…, n, k = 1,…,K (13)  

∑n

i′ =1

∑T

t=aj+sjk

tuji′ kt ≥
∑T

t=ai+ssik

tuijkt +
∑T

t=ai+sik

tijk(t)uijkt + sjk − T
(
1 − xij

)
∀i, j= 1,…, n, k= 1…..K (14)  

uijkt ∈{0, 1}∀i, j = 0,…, n; k = 1,…K, t = ai + sik,…, T (15)  

xij ∈{0, 1}∀i, j = 0,…, n (16) 

The objective function (10) maximizes the sum of the prizes net of the time window violation penalty. Constraints (11) and (12) are identical to 
Constraints (2) and (3) of the original model. Constraint (13) stipulates that if customer j is visited immediately after customer i, a corresponding arc is 
selected on each of the time-expanded graphs. Constraint (14) ensures that the departure times in each of the scenarios are compatible with the travel 
and service times of the scenario and the sequence (common to all of the scenarios). This constraint also enforces service only after the opening of the 
time windows and eliminates subtours together with (12) and (13). Constraints (15) and (16) define the domains of the decision variables. 

We note that the number of binary decision variables uijkt is approximately n2KT. The smallest problem presented in Section 5 was related to 
working days with 24 customers, 40 scenarios and 540 time units (of 1 min). This leads to a model with more than 10 million binary variables. 
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