Speaker Identification Using Mel Frequency Cepstrum Coefficients
Implemented using a RaspberryPi platform

Project Number: 17-2-1-1474
By: Guy Eliyahu, Matanel Hamiel Advisor: Roi Raich
Project Carried Out at Tel Aviv University

BACKGROUND
- Voice or speaker recognition is the ability of a machine or program to receive and interpret dictation or to understand and carry out spoken commands.
- Voice recognition has gained prominence and use with the rise of AI and intelligent assistants, such as Amazon’s Alexa and Apple’s Siri.
- Speaker identification is a sub-field of voice recognition and refers to identifying the speaker, rather than what they are saying.
- Cepstrum is a simplified method for speech processing and described as performing an inverse Fourier Transform on the logarithm of the absolute value of the sample spectrum.
- Mel Frequency Cepstral Coefficients, or MFCC, is an improved method of speech processing, considers the un-linear Human perception of speech. In this method, the speech spectrum is filtered by Mel filter and the frequency axis is scaled into Mel scale.

PROJECT PURPOSE
- Writing a MFCC based algorithm for speaker identification in MATLAB.
- Implementing the algorithm on hardware creating a stand alone system for speaker recognition.

ALGORITHM
- A inputed sample of speech will go through the following process:
 - Input audio
 - Preprocessing
 - MFCC
 - Compare to database
 - Save to database
- The inputted audio goes through the preprocessing stage, where the audio is reduced to only the active speech parts.
 - Preprocessing
 - $s[n]$: Input audio
 - S_{PP}: Mel filter output
 - $s_{PP}[n]$: Filtered audio
 - $s[n]$: Reduced audio
 - $s_{PP}[n]$: Reduced audio
 - $s_{PP}[n]$: Reduced audio

RESULTS
- Our MATLAB program was 100% successful for matching 20 inputted audio segments to their respective speakers in the database.

HARDWARE IMPLEMENTATION
- The algorithm was re-written in Python to work on a Raspberry Pi platform as a speaker identification application.
- Using Python’s TKinter library, a user-friendly GUI was designed.
- A size adjustable GUI was designed to fit a 3.5” screen, creating a stand alone system.

CONCLUSIONS & FUTURE WORK
- The algorithm works for basic scenarios.
- Future projects may contain noise reduction and routine reduction making the application more efficient.
- Future projects may contain other voice-processing algorithms such as Linear Prediction Cepstral Coefficients and Machine Learning for performance comparing.
- Future projects may contain work on an embedded system such as STM32.

SOURCES
- Ahmad Al Marashi and Dr. Oumaima Al Dakhak, "Automatic, text independent, Speaker Identification and Verification System Using Mel Cepstrum and GMM*.