
Accessorize in the Dark: A Security
Analysis of Near-Infrared Face Recognition

Amit Cohen and Mahmood Sharif?

Tel Aviv University

Abstract. Prior work showed that face-recognition systems ingesting
RGB images captured via visible-light (VIS) cameras are susceptible
to real-world evasion attacks. Face-recognition systems in near-infrared
(NIR) are widely deployed for critical tasks (e.g., access control), and
are hypothesized to be more secure due to the lower variability and
dimensionality of NIR images compared to VIS ones. However, the ac-
tual robustness of NIR-based face recognition remains unknown. This
work puts the hypothesis to the test by offering attacks well-suited for
NIR-based face recognition and adapting them to facilitate physical re-
alizability. The outcome of the attack is an adversarial accessory the
adversary can wear to mislead NIR-based face-recognition systems. We
tested the attack against six models, both defended and undefended,
with varied numbers of subjects in the digital and physical domains. We
found that face recognition in NIR is highly susceptible to real-world
attacks. For example, ≥96.66% of physically realized attack attempts
seeking arbitrary misclassification succeeded, including against defended
models. Overall, our work highlights the need to defend NIR-based face
recognition, especially when deployed in high-stakes domains.

1 Introduction

Face-recognition technology has become increasingly popular in recent years,
with applications ranging from border security [7] and surveillance [41] to access
control [1,2]. Among others, face recognition based on near infrared (NIR) imag-
ing has received wide adoption (e.g., [1,2]) due to its near-invariance to changes
in ambient illumination and its ability to capture facial features in dark envi-
ronments [17]. Because such NIR-based face-recognition systems are deployed to
address security-critical problems, it is crucial to analyze their integrity against
adversaries seeking to mislead them (e.g., to circumvent surveillance or receive
unauthorized access).

Recent work in adversarial machine learning (ML) has demonstrated that
ML models in general, and ones for face-recognition in particular, are vulnera-
ble to evasion attacks at deployment time (e.g., [20, 32, 33, 36, 37]). Specifically,
adversaries generating so-called adversarial examples—minimally but strategi-
cally modified variants of benign inputs—can lead ML models to misclassify.
? Corresponding author (e-mail: mahmoods@tauex.tau.ac.il).
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These adversarial examples can also be realized in the problem space to mislead
systems [29]. For example, adversaries can physically realize and wear acces-
sories such as eyeglasses to impersonate others against face recognition in visible
light (VIS) [32,33]. Still, prior work demonstrating evasion attacks against image
classification chiefly focused on systems relying on VIS sensors, and the suscepti-
bility of NIR-based face recognition to evasion attacks has yet to be determined.
Indeed, because NIR images vary less under changes in imaging conditions [17]
and have lower dimensionality (shown to be correlated with susceptibility to
attacks [31]) than VIS images, it is plausible that NIR-based face-recognition
systems could be less susceptible to evasion than their VIS counterparts.

Our work fills the gap by developing and evaluating attacks against state-
of-the-art NIR-based face-recognition models, enabling us to determine whether
and to what extent these systems are vulnerable to evasion attacks in the digital
and physical domains. We design attacks that enable adversaries to mislead NIR-
based face recognition according to different attack objectives (namely, dodging
to attain arbitrary misclassifications or impersonation), and further extend them
to facilitate realizing adversarial examples in the physical world. For example,
among others, we ensure attacks are robust to real-world transformations, such
as changes in pose and camera sampling noise. The attacks result in accessories
(namely, eyeglasses) adversaries can wear to mislead face recognition.

We extensively tested attacks against six state-of-the-art NIR-based face-
recognition models in the digital and physical domains. Our experiments involved
varied numbers of subjects, and both undefended and defended [42] models. We
found that the models were highly vulnerable to evasion, with a mean of 98.33%
of dodging attempts and 77.77% of impersonation attempts succeeding in the
physical domain. The defense hindered impersonation attacks to some extent
(36.66% mean attack success rate), but was still vulnerable to dodging (96.66%
mean attack success rate). Overall, our work highlights that NIR-based face
recognition-systems are not inherently more robust than their VIS counterparts,
and that defenses to advance their integrity in adversarial settings are crucial.

The paper is structured as follows. Next, we present necessary background
(§2) and the threat model (§3). Then, we introduce our methodology (§4), fol-
lowed by an evaluation of NIR-based face recognition’s robustness (§5). Lastly,
we close the paper by discussing its limitations (§6) and concluding (§7).

2 Background and Related Work

2.1 Face Recognition in NIR

NIR is a portion of the electromagnetic spectrum falling between visible light
and mid-infrared, with wavelengths ranging between ∼700 and ∼2500 nm. As
NIR light can penetrate certain material, such as clothing and wood, it is partic-
ularly useful for imaging such objects. Consequently, NIR is commonly used in
various applications, ranging from gaze detection in challenging conditions [24]
to the analysis of food and agricultural products [25]. In the biometrics field,
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NIR has been used for face recognition, including in widely deployed commer-
cial systems (e.g., [1, 2]), due to its ability to capture facial features that may
not be otherwise visible. Notably, NIR cameras can capture images in low-light
conditions, rendering them useful for settings with limited (VIS) illumination,
such as surveillance and biometric authentication in the dark.

Leading NIR-based face-recognition systems rely on deep learning [9, 10, 12,
14,15,23,43,44,49]. For example, Lezama et al. presented a deep-learning-based
face-recognition system to identify individuals based on their NIR facial im-
ages [18]. They attained high recognition performance by leveraging generative
models mapping NIR to VIS and an off-the-shelf feature-extraction network as a
backbone, and tuning the representations using generated images. Later on, Wu
et al. presented a deep convolutional neural network, named LightCNN, designed
to be light-weight and effective on multiple tasks [43]. Among others, LightCNN
achieves high accuracy on NIR-based face recognition. In a follow-up work, Fu
et al. proposed an LightCNN variant, LightCNN-DVG [12], achieving the high-
est face-recognition accuracy in NIR to date. The primary difference between
LightCNN and LightCNN-DVG is that the latter is fine-tuned with NIR-VIS
data. During fine-tuning, LightCNN-DVG was trained to map NIR and VIS im-
age pairs of the same person (resp., different people) into feature vectors that
are close together (resp., further away) in the feature space. We evaluate our
proposed attack against a representative set of such top performing models.

2.2 Attacking ML

Attacks against ML models can be categorized based on attacker objectives and
capabilities. Several attack types against ML have been proposed, including,
but not limited to, training-time attacks, where adversaries partially control the
training data or process to harm model performance (e.g., [5, 16]); privacy at-
tacks, where adversaries aims to extract sensitive information about the training
data from access to the model or training process (e.g., [34]); and availability
attacks, where attackers seek to craft inputs that increase prediction or training
latency (e.g., [35]). By contrast, our work studies evasion attacks in which ad-
versaries have no control over the trained model but can manipulate inputs at
inference time to induce misclassifications (e.g., [20, 36]).

Evasion attacks were first popularized by Biggio et al. [4] and Szegedy et
al. [36], who demonstrated the vulnerability of ML models to small perturbations
of their inputs. Since then, evasion attacks have been studied extensively, with
numerous techniques proposed for generating and defending against adversarial
examples (e.g., [6, 13, 20, 27]). Formally, evasion attacks seek to find a solution
to some variation of the following optimization problem:

argmax
δ
L
(
f(x+ δ), cx

)
where f is an ML model, x is the input, δ is an adversarial perturbation, cx
is the input’s class (i.e., label), and L is the loss function. Often, the optimiza-
tion is constrained by requiring that δ’s `p-norm is bounded by a constant ε,
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(i.e., ||δ||p =
(∑

i |δi|p
)1/p ≤ ε, commonly for p ∈ {2,∞}). By solving the op-

timization, attacks aim to find perturbations increasing the loss, leading f to
misclassify. Several first-order (i.e., gradient-based) optimization methods have
been proposed to solve the optimization (e.g., [6, 13]), many of which are slight
variants of the popular Projected Gradient Descent (PGD) attack [20]. Given
a model and a sample input, PGD generates adversarial perturbations in an
iterative manner—it calculates the input gradients w.r.t. the loss, and updates
the input in the direction maximizing the model’s error. More formally, PGD
computes the perturbed sample xt+1 at iteration t+ 1 by:

xt+1 = ΠS(x
t + α sign(∇xtL(f(xt), cx)))

where α is the step size, and ΠS projects samples into a set of allowed per-
turbations S (e.g., ε-ball around x), and x0 is set to x or randomly initialized
within S. The attack we design (§4) is a variant of PGD in which δ’s max-norm
is unbounded, but the perturbation can be applied to a specific region in the
image covered by an accessory, as defined by a mask.

Attackers performing evasion can vary in their capabilities. In white-box set-
tings, attackers have full access to the model parameters and architectures, al-
lowing them to design powerful attacks using their knowledge about the model
(e.g. gradients [20]). By contrast, in black-box settings, attackers have no access
to the model internals, and may only query models [27]. Thus, intuitively, black-
box attacks are more challenging than white-box attacks. Attacker goals may
also vary. An attacker may aim to produce any misclassification—i.e., conduct
an untargeted attack—or induce a misclassification to a particular class—i.e.,
perform a targeted attack [28]. Intuitively, targeted attacks impose more con-
straints and are hence more challenging.

Early evasion attacks primarily explored adversarial perturbations constrained
in `p-norms. While in those settings the adversarial sample is close to the orig-
inal benign example, `p-norm-bounded attacks are challenging to realize in the
problem space (i.e., as an artifact whose corresponding features are misclassified
by a model) [29]. By contrast, realizable attacks incorporate domain constraints
to produce problem-space artifacts that lead to evasion (e.g., [3, 11, 29, 30, 32].)
For example, Sharif et al. showed how to produce eyeglass frames that adver-
saries can don to evade VIS-based face recognition [32]. The attack was effective
under real-world circumstances, allowing adversaries to mislead recognition by
wearing eyeglass frames with specific color patterns. Differently than Sharif et
al., we develop attacks suited for NIR-based face recognition.

2.3 Defending ML

Defending models’ integrity against evasion attacks is crucial for ensuring safe
and secure deployment. Adversarial training—the process of augmenting the
training data with correctly labeled adversarial examples—is one of the most ef-
fective techniques for enhancing model robustness (e.g., [13,20]). Other defenses
offer methods to detect adversarial inputs (e.g., [22]), sanitize adversarial per-
turbations (e.g., [48]), and certify robustness within certain regions (e.g., [8]).
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Researchers have also published defenses against patch-based attacks [45–47],
however these are either limited to models with small receptive fields or signifi-
cantly increase inference time. Wu et al. presented a defense method called De-
fense against Occlusion Attacks (DOA) to defend against physically realizable
attacks in the image domain [42]. They suggest adversarially training models
with an abstract adversary perturbing a rectangular patch and show this en-
hances robustness against adversaries using eyeglasses to evade face recognition
and ones producing stickers to evade traffic-sign recognition. We evaluate our
attack against a model defended via DOA.

3 Threat Model

In this paper, we primarily study white-box evasion attacks against NIR-based
face-recognition models. Studying white-box attacks is critical, as (1) it can
help us assess systems’ vulnerability when relying on publicly available models
(e.g., [43]) or when proprietary models are stolen [38]; (2) they help assess the
effectiveness of defenses against worst-case adversaries with complete knowledge
of the system, and inform means to enhance them; and (3) these attacks serve
as the basis for black-box attacks using queries to estimate gradients [27] or via
transferability [26]. Indeed, we attempt to transfer attacks created against sur-
rogate models to target models, thus simulating black-box attacks, and find that
evasion attempts often transfer between NIR-based face-recognition models. We
implement both untargeted (dodging) and targeted (impersonation) attacks, and
test them both in digital and physical domains against state-of-the-art models.

To maintain stealth and plausible deniability, we consider attacks using ev-
eryday accessories (mainly eyeglasses, but also face masks and stickers), in line
with prior work [32, 37]. By using accessories, the adversary aims to remain in-
conspicuous and avoid raising suspicion by observers. Additionally, we aim for
the attacks to be (physically) realizable, such that adversaries would be able to
mislead the system by slightly changing their own appearance, without altering
their surroundings or manipulating the digital representation of their image.

4 Methodology

We now present our attacks against NIR-based face recognition, starting with
how to evade models before describing how to enable physical realizability.

4.1 Evading Recognizers

The face-recognition systems we study classify NIR face images by finding the
most similar VIS image from within an image gallery. The process is enabled
by neural networks that extract feature vectors of both NIR and VIS images.
For classification, the systems compute the cosine similarity cos(·, ·) between the
NIR features and each of gallery images’ features. Eventually, the gallery subject
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with the highest similarity is selected as the classification result. After exploring
numerous directions (see §5.2), we identified techniques that were most effective
at producing dodging and impersonation attacks.

Dodging In dodging, the adversary’s goal is to produce an arbitrary misclassi-
fication to any class other than the true class. We find that evading classification
by increasing the similarity w.r.t. the closest incorrect class (in a given attack
iteration) and decreasing it w.r.t. the true class is most effective (§5.2). Given
an input x pertaining to class (i.e., gallery subject) cx, we denote the feature
array of the gallery images by G ∈ Rk×d, where k is the number of classes,
and d is the dimensionality of the features extracted by the model f , and by
max c6=cx

(
cos(f(x), G[c])

)
the closest class to x which is not cx. To produce a

misclassification, we find a perturbation δ that maximizes the dodging loss:

Ldodge(x, cx) = −αcos
(
f(x+ δ), G[cx]

)
+ βmax c 6=cx

(
cos(f(x+ δ), G[c])

)
where α and β are two non-negative constants, aiming to balance the first ob-
jective (decreasing the distance from cx) and the second objective (increasing
similarity with the most similar class c 6= cx), respectively. After running a grid
search, we found that setting both α and β to one led to the highest success.

Impersonation In impersonation, the adversary selects a target class (i.e., sub-
ject) ct to impersonate. To achieve this objective, besides increasing similarity
with ct and decreasing similarity with cx, we found that it is crucial to decrease
similarity with all gallery subjects that are more similar to the input than the
target, or are less similar to the input than the target but only slightly so. Said
differently, our attack aims to ensure that the similarity with ct is higher than
all other classes by a significant margin, increasing the confidence that the (ad-
versarial) input pertains to ct. In doing so, we could increase the likelihood that
attacks would succeed when realized, even when similarity with ct is decreased
after realization (e.g., due to imperfect fabrication of the accessory). To this end,
we define the high-margin (hm) loss:

Lhm =
1

k

∑
c

ReLU
(
cos(f(x+ δ), G[c])− cos(f(x+ δ), G[ct]) + τ

)
where τ is a small non-negative constant set to ensure that the perturbation
decreases the similarity w.r.t. classes sufficiently similar to x (i.e., with similarity
higher or up to a small margin of ct). We empirically found that τ=0.2 leads
to successful attacks (see §5). Accordingly, the impersonation attacks aim to
maximize the impersonation loss, defined by:

Limp(x, cx) = αcos
(
f(x+ δ), G[ct]

)
− βcos

(
f(x+ δ), G[cx]

)
− γ ∗ Lhm

where α, β, and γ are non-negative constants to balance between the attack goals,
of increasing similarity with ct, decreasing similarity with cx, and decreasing
Lhm . We set α and β to 6, and γ to 15, as we found these to work best after
performing a grid search.
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(a) (b)

Fig. 1: Attacks generated with (a) and without (b) minimizing TV.

4.2 Realizing Attacks

To implement attacks in the physical world, measures to aid in fabricating the
adversarial artifacts and improve their robustness to varying imaging conditions
(e.g., scale and pose) are necessary [32]. We address this by adding constraints
to the attack to encourage the creation of objects that resemble their digital
counterpart when printed and photographed with an NIR camera, and are robust
to transformations encountered in the real world, as elaborated below.

Total Variation (TV) When not restricted, the attack may produce sharp,
unnatural transitions between neighboring pixels. Such transitions would be chal-
lenging to realize, as they would require high-resolution printers and cameras to
produce and capture them [21, 32]. Thus, to facilitate realizability and promote
inconspicuousness, we use TV as part of the loss, similarly to Sharif et al.’s
work [32]. Given an input x ∈ Rd×d, TV measures the distance between neigh-
boring pixels via the following formula:

TV (x) =
∑
i,j

[(xi,j − xi+1,j)
2 + (xi,j − xi,j+1)

2]β

where β is a configurable parameter that we set to 1, in line with prior work [32].
Fig. 1 shows artifacts produced with and without TV—by minimizing TV, at-
tacks produce artifacts with smooth textures more amenable for realization.

Printability To produce adversarial artifacts containing colors that can be
physically realized via printing, we define and use a Non-Printability Score (NPS)
metric tailored for the NIR domain. To define NPS, we first identify the color
ranges our printer can produce and model how they are captured by cameras.
Empirically, this works by printing a grayscale palette covering the entire [0,
255] range and photographing it (see Fig. 2a).1 Doing so showed that the range
of printable colors is a consecutive sub-range [vlb , vub ]=[40,180] of the the full
[0,255] range (see Fig. 2b). Moreover, we observe a roughly linear relationship
between printed colors an their captured counterparts, enabling us to pre-process

1 We use grayscale as NIR contains a single channel and we found grayscale covers
the value range more comprehensively than RGB.
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(a) (b)

Fig. 2: (a) Digital grey-scale palette (left) compared to a printed and pho-
tographed palette (right). (b) Comparison of digital colors and their realized
counterparts (after being printed and recaptured via an NIR camera). A dotted
line is added to emphasize the roughly linear relationship.

the accessories’ colors prior to printing to preserve similarity between the printed
and captured colors (§5.3). Accordingly, we defined the NPS formula as follows:

NPS (x) =
∑
i,j

[ReLU(vlb − xi,j) +ReLU(xi,j − vub)].

Intuitively, the NPS accumulates a penalty for each pixel that is lower than the
lower bound or higher than the upper bound color we could realize. Therefore, by
minimizing NPS, our attack pushes colors on the adversarial artifacts to become
printable, thus aiding in realizability.

Expectation Over Transformation (EOT) is a measure aiming to enhance
robustness against changes likely to be encountered in the physical world [3].
For instance, when an attacker wears accessories (e.g., eyeglasses), we cannot
assume they will be located exactly as intended on the face, that the attacker
pose will be completely frontal, or that they will stand at a fixed distance w.r.t.
the camera. To ensure that attacks succeed across input variations, we adapt
EOT to face recognition such that we maximize the expected impersonation
and dodging losses over potential variations. Formally, given an image x and a
perturbation δ, instead of maximizing L{dodge|imp} over x + δ, we maximize it
over t1

(
x+ t2(δ)

)
for t1 ∼ T1 and t2 ∼ T2, where T1 are transformations applied

to the face and accessory combined (e.g., changes in pose or distance), and T2
are transformations applied to accessory alone (e.g., slight translation due to
dislocation and noise due to sampling errors). Specifically, for T2, we use slight
rotations (∈ [-2,2] degrees), scaling (×[0.98,1.02]), and translations along the x-
and y-axes (∈ {-2,. . . ,2}), to account for potential variations that might occur
when attackers wear the accessory. Furthermore, we add small amount of zero-
centered Gaussian noise (σ=0.04) to δ to account for slight color noise during
sampling. To simulate transformations of the face and accessory (i.e., T1), we
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take multiple images per attacker with slight variations in pose, distance, and
lighting and attach the accessories to them via perspective transformation.

Overall Objective To physically realize attacks we find δ that maximizing

argmax
δ
Et1,t2∼T1,T2

[
L{dodge|imp}

(
f
(
t1
(
x+t2(δ)

))
, c{x|t}

)]
−ω1TV (δ)−ω2NPS(δ).

The optimization process searches for a perturbation δ maximizing Ldodge or
Limp (depending on the attack objective) over expected input transformations,
while minimizing the TV and NPS of δ. ω1 and ω2 are non-negative constants
for balancing the objectives tuned to maximize the success of realized attacks.

Implementation Details We solve the optimization using PGD, after initial-
izing the accessory colors to a uniform grayscale value of 76/255, allowing the
accessory’s values to range ∈ [0,1] while not perturbing values not covered by
the accessory. We run PGD for 400 iterations and set its step size to 1/255. To
enable a more direct comparison with prior work, we use Sharif et al.’s eyeglasses
covering 8% of the image [32] as the adversarial accessory. We tested other ac-
cessories (e.g., face masks and stickers) in the digital domain and found they led
to relatively lower success than eyeglasses (§6). We implemented attacks using
PyTorch and published our code to aid in reproducibility.2

5 Evaluation

Our experiments examined the vulnerability of several NIR-based face-recognition
systems to dodging and impersonation attacks in the digital and physical do-
mains. Next, we describe our experimental setup before reporting the results of
attacks in the digital (§5.2) and physical (§5.3) domains.

5.1 Experimental Setup

Data For our evaluation, we relied on the CASIA NIR-VIS 2.0 dataset [19].
This dataset consists of frontal face images of 725 subjects collected using NIR
and VIS sensors. The VIS images were collected in visual light, while NIR images
were collected in complete darkness, using an NIR camera surrounded by 850
nm NIR light-emitting diodes (LEDs). Fig. 3 presents samples from the dataset.
The number of VIS images per subject varies between one and 22 while that
of NIR images varies between five and 50. For testing, the dataset contains a
gallery of 358 VIS images, one per subject, and a probe set consisting of 6,000
NIR images for the same 358 subjects. The objective is to map the NIR images
from the probe set to the correct identity from the gallery. The dimensionality of
the images is 480×640, and we aligned them to a fixed pose and cropped them
to 224×224 centered around the face, per standard practice [32].

2 Code available at https://github.com/AmitCohen3/Accessorize-in-the-dark

https://github.com/AmitCohen3/Accessorize-in-the-dark
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Fig. 3: NIR (top) and VIS (bottom) images of three subjects (columns) from the
CASIA NIR-VIS 2.0 dataset.

To conduct experiments in the physical domains, we further augmented the
dataset by enrolling three additional subjects—two males and a female 28–31
years of age. We refer to them by S1–S3. For each subject enrolled, we captured
a VIS image and 20 NIR images, all using an Intel RealSense D415 camera. Sim-
ilarly to CASIA NIR-VIS 2.0 dataset [19], both VIS and NIR images were taken
with the subject’s face positioned in the middle of the frame with a frontal pose.
When capturing images in NIR, the subjects were wearing eyeglasses frames
and were asked to slightly move their faces in a circular motion. All images
were taken in a dark room, with closed window blinds to prevent external light,
while turning on NIR LEDs positioned around the camera to faithfully simulate
CASIA NIR-VIS 2.0’s conditions. For printing, we used a Xerox B230 printer.

Models We evaluated attacks against state-of-the-art architectures for NIR-VIS
face-recognition: LightCNN, LightCNN-DVG, LightCNN-Rob, and ResNeSt. Wu
et al. proposed LightCNN and trained it using multiple VIS datasets after con-
verting inputs to one-dimensional (i.e., grayscale) images [43]. They showed that,
by training model on noisy labels, LightCNN can attain high performance on
the NIR-VIS face-recognition task. We acquired the LightCNN weights pub-
lished by the authors. LightCNN-DVG was proposed in a follow-up work by
the same group, in which they fine-tuned LightCNN using generated pairs of
NIR-VIS face images to further improve the model’s accuracy [12]. We trained a
LightCNN-DVG model on our dataset using the official code. To enhance model
robustness against attacks, we also followed Wu et al.’s protocol to adversari-
ally train a model [42]. In particular, we fine-tuned LightCNN-DVG using the
DOA method, running 10 epochs of adversarial training.3 Finally, because some
NIR-based face recognition systems leverage typical VIS models receiving three
channels as input (e.g., [18]), we complemented the LightCNN variants with
a Residual Neural Network with Split Attention (ResNeSt) model [50]. We ac-
quired pre-trained ResNeSt weights through Wang et al.’s project [39], and found
it was markedly more accurate than other 11 models ingesting three channels

3 We used the Adam optimizer with a 1e-5 learning rate for best performance.
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Table 1: The models’ benign accuracy with the enrolled subjects included. The
standard deviation is negligible (<1e-4), thus excluded.

Model Benign accuracy

LightCNN 98.27%
LightCNN-DVG 99.80%
LightCNN-DVG-100 99.84%
LightCNN-DVG-10 99.85%
LightCNN-Rob 99.56%
ResNeSt 91.10%

Wang et al. offer (including ResNet and VGG models). Lastly, to assess how the
number of subjects affects attack success, we evaluated variants of LightCNN-
DVG, LightCNN-DVG-10 and LightCNN-DVG-100, on a subset of ten and 100
subjects, respectively, both of which include the three subjects we enrolled.

To measure benign accuracy, we followed CASIA’s protocol [19]: we divided
the data into ten folds while adding the enrolled subjects to each of the folds and
measured the mean accuracy over the folds. For models with ten or 100 subjects,
we randomly chose the subjects from the dataset to compute benign accuracy,
and calculated the mean over ten repetitions. Table 1 reports the benign ac-
curacy of all models. All models were highly accurate, and, as expected, the
most advanced model, LightCNN-DVG, was most accurate, with an increasing
accuracy as the number of subjects decreased.

Metrics We measured attack performance by their success rate (SR) and mar-
gin. SR estimates how often the attack achieves its objective—i.e., the percentage
of time the attacker is misclassified as someone else (resp. target class) in dodging
(resp. impersonation) attacks. The margin is a proxy for the confidence in the
(mis)classification result. We measured it by the difference between similarity
with the top prediction (resp. target class) and the true class in dodging (resp.
impersonation) attacks.

5.2 Digital Attacks

We tested attacks in the digital domain to find loss functions that maximize
attack success and assess the security of NIR-based face recognition in ideal
settings, where adversaries can precisely produce adversarial accessories. In these
attacks we ignored the TV, printability, and EOT objectives, and mainly focused
on misclassifications using a single adversary image. We evaluated both dodging
and impersonation attacks, selecting the impersonation targets at random. We
ran each attack type ten times, each time with different 1,024 NIR images (or all
images available for the subjects, if less than 1,024), and measured the average
and standard deviation (std) of the SR and margin over these repetitions. Lastly,
we tested the transferability of attacks—i.e., how often attacks created against
one model succeed against other models—to simulate black-box attacks.
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Table 2: Comparison between dodging losses against LightCNN-DVG.
Loss SR Margin (std)

L1
dodge = −αcos

(
f(x+ δ), G[cx]

)
100.00% 0.38 (0.13)

L2
dodge = −αcos

(
f(x+ δ), G[cx]

)
+ βmaxc6=cx

(
cos(f(x), G[c])

)
100.00% 0.30 (0.11)

L3
dodge = −αcos

(
f(x+ δ), G[cx]

)
+ βmaxc6=cx

(
cos(f(x+ δ), G[c])

)
100.00% 0.50 (0.13)

Table 3: Comparison between impersonation losses against LightCNN-DVG.
Loss SR Margin (std)

L1
imp = cos

(
f(x+ δ), G[ct]

)
84.37% 0.20 (0.15)

L2
imp = αcos

(
f(x+ δ), G[ct]

)
− βcos

(
f(x+ δ), G[cx]

)
72.07% 0.40 (0.16)

L3
imp = αcos

(
f(x+ δ), G[ct]

)
− βmaxc(cos(f(x+ δ), G[c])) 87.07% 0.02 (0.02)

L4
imp = αcos

(
f(x+ δ), G[ct]

)
− βcos

(
f(x+ δ), G[cx]

)
− γmaxc(cos(f(x+ δ), G[c])) 80.23% 0.40 (0.16)

L5
imp = αcos

(
f(x+ δ), G[ct]

)
− βcos

(
f(x+ δ), G[cx]

)
− γmaxc6=cx(cos(f(x+ δ), G[c])) 85.89% 0.34 (0.15)

L6
imp = αcos

(
f(x+ δ), G[ct]

)
− βcos

(
f(x+ δ), G[cx]

)
− γ ∗ Lhm 91.01% 0.34 (0.17)

Table 4: SRs and margins for digital-domain dodging and impersonation attacks.
Dodging Impersonation

Model SR Margin (std) SR Margin (std)

LightCNN 100.00% 0.48 (0.15) 90.92% 0.30 (0.17)
LightCNN-DVG 100.00% 0.50 (0.13) 91.01% 0.34 (0.17)
LightCNN-DVG-100 100.00% 0.50 (0.12) 94.95% 0.39 (0.17)
LightCNN-DVG-10 100.00% 0.47 (0.12) 98.78% 0.35 (0.17)
LightCNN-Rob 100.00% 0.36 (0.13) 52.66% 0.09 (0.19)
ResNeSt 100.00% 0.35 (0.10) 89.05% 0.20 (0.11)

Loss-Function Selection We evaluated various loss function for dodging and
impersonation to identify the ones maximizing attack success. In these exper-
iments, we ran attacks against LightCNN-DVG, as it was the most robust
amongst the undefended models. Table 2 presents the three dodging losses con-
sidered and their corresponding SRs and margins. L1

dodge aims to decrease the
similarity with the true class; L2

dodge extends L1
dodge by increasing similarity with

the closest subject (excluding cx) prior to running the attack; and L3
dodge (Ldodge

in §4.1) extends L1
dodge by increasing similarity with the closest subject to x+ δ

in the current iteration. L3
dodge led to markedly higher margins, hence we used

it in subsequent attacks. Table 3 lists the six impersonation losses we tested
and their respective SRs and margins. L1

imp seeks to increase similarity with ct;
L2
imp also aims to decrease similarity with cx; L3

imp extends L1
imp by decreasing

similarity with the current top prediction; L4
imp combines L2

imp and L3
imp ; L5

imp

refines L4
imp by excluding cx when decreasing similarity with the top prediction;

and L6
imp is equivalent to Limp described in §4.1. It can be immediately seen

that L6
imp reached remarkably higher SR than other losses. Thus, we used L6

imp

to perform impersonations in the following experiments.
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Table 5: Transferability of digital dodging (left) and impersonations (right).
XXXXXXXXXSurrogate

Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 100.00% 98.82% 76.95% 38.67%
LightCNN 100.00% 100.00% 68.93% 41.28%
LightCNN-Rob 96.24% 89.52% 100.00% 40.31%
ResNeSt 1.32% 11.45% 20.04% 100.00%

XXXXXXXXXSurrogate
Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 91.02% 66.99% 25.00% 0.00%
LightCNN 65.42% 90.9% 37.10% 0.00%

LightCNN-Rob 41.30% 26.48% 52.56% 0.39%
ResNeSt 0.16% 0.17% 0.22% 89.04%

Attack Evaluation Table 4 reports the performance of digital-domain dodg-
ing and impersonation attacks against all models, using Ldodge and Limp , respec-
tively. It can be observed that all dodging attempts against all models succeeded.
Impersonation attacks’ SRs, on the other hand, ranged between 52.66% and
98.78%. The defended model, LightCNN-Rob, was the most challenging to mis-
lead, with 52.66% impersonation SR and a 0.09 margin, compared to ≥89.05%
and ≥0.20 margins for the undefended models. Moreover, perhaps intuitively, im-
personation attacks against models with fewer subjects (i.e., LightCNN-DVG-10
and LightCNN-DVG-100) were relatively more successful than the model with
all subjects (i.e., LightCNN-DVG).

Although attacks were not optimized for transferability, we found that they
often transfer successfully, especially between the LightCNN variants (Table 5).
Between different LightCNN models, the mean SR of transferred attacks ranged
between 68.93%–100.00% for dodging and 25.00%–65.42% for impersonation.
Impersonation attacks transferred from and to ResNeSt had low SRs (≤0.39%),
but dodging attacks against LightCNN variants often misled ResNeSt (38.67%–
41.28% mean SR). We expect higher SRs would be achievable by integrating
techniques to promote transferability (e.g., [40]).

5.3 Physical Attacks

We tested physical-domain attacks against all models. In these experiments, the
three subjects introduced to the dataset simulated attackers. For each subject,
we ran dodging and impersonation attacks against each model, for a total of
3×2×6=36 attack attempts. As in the digital-domain, we randomly chose the
target in each impersonation attack. For each attack, we solved the correspond-
ing optimization with all objectives (§4.2) to generate eyeglass textures, which
we then printed, cut, and affixed to 3D frames. To this end, we used all NIR
images available for the subject to estimate the EOT of the loss and solve the
optimization. Prior to printing, we increased the accessory’s pixels’ brightness
by 40/255 to ensure the printed value of each pixel corresponds to its digital
counterpart (per Fig. 2b). We then collected ten images of the person simulat-
ing the attacker while wearing the adversarial eyeglasses to measure attack SR.
Besides white-box attacks, we again evaluated the transferability of attacks be-
tween models to simulate black-box settings. Next, we report how we weighted
each term in the overall attack objective, followed by the attack performance.

Setting TV’s and NPS’ Weights In our preliminary experiments, we found
that adversarial eyeglasses with a TV value of ∼200 and an NPS value of ∼250
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Table 6: Digital-domain impersonation SR against LightCNN-DVG for varied
TV and NPS weights.

PPPPPPPTV w.
NPS w. 0 1e-4 1e-3 1e-2

0 92.18% 91.60% 91.01% 85.54%
2e-4 91.99% 91.99% 91.99% 90.82%
2e-3 85.15% 90.62% 90.62% 90.42%
2e-2 85.74% 87.69% 87.5% 87.69%

Table 7: Mean NPS (left) and TV (right) values for varied TV and NPS weights.
PPPPPPPTV w.

NPS w. 0 1e-4 1e-3 1e-2

0 319.24 273.99 165.10 32.4481
2e-4 263.72 263.72 244.79 157.34
2e-3 32.24 182.62 175.07 128.75
2e-2 30.03 116.12 112.13 90.14

PPPPPPPTV w.
NPS w. 0 1e-4 1e-3 1e-2

0 347.33 295.46 201.50 112.38
2e-4 229.74 229.74 217.67 167.73
2e-3 100.15 95.20 93.62 83.04
2e-2 61.34 23.04 22.96 22.27

Fig. 4: S1 physically dodging (left) and impersonating (middle) target ID 00041
(right) against LightCNN-DVG.

preserve the digital-domain SR best when realized. To this end, to appropriately
tune the TV and NPS weights and attain values in the desirable range while
maximizing attack SRs, we performed a grid search, evaluating attack SRs in
the digital domain with different weights assigned to the TV and NPS objec-
tives. Specifically, we conducted digital-domain impersonation attacks against
LightCNN-DVG, using a single adversary image at a time. We repeated the ex-
periment 512 times, each time with different attacker image and a target selected
at random. Tables 6–7 report the mean attack SRs, and the mean TV and NPS
scores. Per these results, we set the TV and NPS weights to 2e-4 and 1e-3, re-
spectively, as they resulted in the highest attack SRs while attaining TV and
NPS conducive for faithful realization.

Attack Evaluation Table 8 reports the attack SRs against all models. Dodg-
ing attacks were highly successful, with ≥9/10 attempts leading to misclassi-
fication in all cases, and all attempts being misclassified for most subject and
model pairs. The models were also relatively susceptible to impersonation at-
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Table 8: SRs of physical attacks. For each model, we report the dodging and im-
personation attack SRs per subject simulating the attacker out of ten attempts,
as well as the mean SR across attackers. In the interest of reproducibility, we
also report the randomly selected impersonation targets.

Dodging Impersonation
Model Attacker SR Mean(SR) Target SR Mean(SR)

LightCNN
S1 10/10

93.33%
10047 10/10

100.00%S2 9/10 20476 10/10
S3 9/10 20361 10/10

LightCNN-DVG
S1 10/10

100.00%
20370 9/10

96.66%S2 10/10 20389 10/10
S3 10/10 00050 10/10

LightCNN-DVG-100
S1 10/10

100.00%
10123 0/10

66.66%S2 10/10 20472 10/10
S3 10/10 00140 10/10

LightCNN-DVG-10
S1 10/10

100.00%
20387 10/10

76.66%S2 10/10 20364 10/10
S3 10/10 30565 3/10

LightCNN-Rob
S1 9/10

96.66%
00041 10/10

36.66%S2 10/10 30778 0/10
S3 10/10 10210 1/10

ResNeSt
S1 10/10

100.00%
20349 10/10

90.00%S2 10/10 00202 7/10
S3 10/10 00122 10/10

Table 9: Transferability of physical dodging (left) and impersonations (right).
XXXXXXXXXSurrogate

Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 100.00% 63.33% 63.33% 0.00%
LightCNN 43.33% 100.00% 40.00% 13.33%
LightCNN-Rob 30.00% 23.33% 96.66% 0.00%
ResNeSt 0.00% 3.33% 33.33% 100.00%

XXXXXXXXXSurrogate
Target LightCNN-DVG LightCNN LightCNN-Rob ResNeSt

LightCNN-DVG 100.00% 36.66% 30.00% 0.00%
LightCNN 33.33% 96.66% 26.66% 0.00%
LightCNN-Rob 23.33% 0.00% 36.66% 0.00%
ResNeSt 0.00% 0.00% 0.00% 90.00%

tacks, with ≥1/10 attempts succeeding in 16 of the 18 impersonation attacks,
and 36.66%–100.00% mean SR across the six models. Naturally, the adversarially
trained model, LightCNN-Rob, was the most challenging to mislead, however,
even against it, two of the three impersonation attacks succeeded in at least 1/10
attempts, with one attack succeeding in all attempts. An example of a physical
attack is depicted in Fig. 4.

Similarly to the digital domain, attacks exhibited strong transferability be-
tween LightCNN variants (Table 9)—mean SRs ranged between 30.00%–63.33%
for transferred physical-world dodging attempts and reached up to 36.66% for
impersonation. However, despite 33.33% mean SR for dodging attempts trans-
ferred from ResNeSt to LightCNN-Rob, physical-world attacks transferred be-
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tween ResNeSt and other models had limited SRs (0.00%–13.33% in all other
cases). Overall, the SRs of transferred attacks were non-negligible, but we expect
they could be further improved via techniques geared to enhance transferability.

6 Limitations

Our findings should be interpreted in light of certain limitations. We evaluated
physical attacks in relatively controlled settings, in a single room, with three
subjects acting as adversaries. Hence, the generalizability of the results to more
settings with other attackers remains to be determined. Still, we expect our re-
sults to inform us about the susceptibility of NIR-based face recognition systems
in real-world deployments, where imaging variations may resemble those in our
experiments (e.g., internal deployment in airports). We also primarily studied
evasion attacks using eyeglasses. However, when testing other accessories, such
as face masks and stickers [37], we found that attack SRs in the digital environ-
ment were significantly lower than with eyeglasses (e.g., 58.43% impersonation
SR with stickers against LightCNN-DVG) or that attacks were conspicuous (e.g.,
attacks with face masks added odd facial features to masks).

7 Conclusion

Prior work has shown VIS-based face-recognition systems to be vulnerable to
evasion attacks (e.g., [32,33,37]). To the best of our knowledge, we are the first
to demonstrate realizable evasion attacks against NIR-based face recognition.
As those systems are widely employed in security-critical settings (e.g., [1, 2]),
our work highlights the need for enhancing their robustness, especially as exist-
ing defenses [42] remain vulnerable to attacks (§5). Relatively expensive defense
techniques, such as human supervision to ascertain the absence of facial acces-
sories, can be implemented immediately. However, further research is needed to
establish technical means to enhance NIR-based face recognition’s adversarial
robustness. We hope that the attacks presented in this work can help inform the
design of such defenses and aid in evaluating them.
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