אירוע פתיחת שנה בחסות התעשייה האווירית

בואו לבחון את עצמכם ולגלות אם קיים בכם ה CHALLENGE ממנו עשויים המהנדסים והמהנדסות שלנו...

29 באוקטובר 2018, 12:00 - 15:00 
הפקולטה להנדסה אוניברסיטת תל-אביב  
תעשייה אווירית

התעשייה האווירית, בשיתוף ארגון עמיתי התעשייה וועד הנדסה מזמינים אתכם ואתכן לקחת חלק באירוע פתיחת שנה חד פעמי שמביא את "נינג'ה ישראל" אליכם לאוניברסיטה!

אלפי מתמודדים ניסו לצלוח את האתגר מסביב לעולם, האם תצליח/י לעשות היסטוריה ולצלוח את המסלול?

 

מחכים לכם על המסלול עם המון הפתעות ופרסים שווים!

School of Mechanical Engineering Dr. Lea Beilkin

19 בדצמבר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Dr. Lea Beilkin

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, December 19, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

ACTIVE CONTROL OF WAVE PROPAGATION IN SYSTEMS.

APPLICATION TO STRUCTURAL VIBRATION, POWER GRIDS

AND MECHANICAL METAMATERIALS

 

Lea Beilkin

 

Post-doctoral researcher

Active-Adaptive Control Lab

Department of Mechanical Engineering

Massachusetts Institute of Technology

 

 

Wave propagation is central to diverse fields of engineering, and its control might be essential to enable flawless operation of existing processes, as well as for design of new ones. In this talk I will discuss the application of control theory through a dedicated fractional order frequency domain approach, to active manipulation of wave propagation processes in systems. In particular, I will present three examples. The first is vibration suppression in mechanical flexible structures, for which the approach is employed as active rigidization of the structures through their boundaries. The second is swing oscillation damping in electric power grids for flawless power transmission. Treating the power disturbances as electro-mechanical waves, the approach is utilized to suppress those waves using minimal concentrated actuation. The results also lead to a methodology of active uni-directional wave generation in the interior of general waveguides, enabling the design of active wave absorbers without any physical boundaries present. The third is the emerging area of acoustic/mechanical metamaterials, which are engineered structures supporting unconventional wave propagation phenomena. I will discuss the design of active mechanical metamaterials, in which the essential underlying mechanism is feedback control. The control system is implemented only via external actuation, i.e. by using a periodic distribution of actuators attached to the host structure (the representative example is a beam in axial vibration) and activated by a proper control logic. The embedded feedback system generates desired combinations of effective wave characteristics (constitutive parameters), but leaves the properties of the host structure unchanged when the transducers are inactive. The fractional order approach turns out to be the key element in the active metamaterial control design, as the associated model explicitly exhibits the dynamic constitutive parameters, dispersion function and impedance. The resulting metamaterial is tunable and reconfigurable in real time, as it is capable of obtaining a variety of conditions for the same operating frequency, including negative effective mass for wave propagation suppression, zero stiffness and negative mass for total wave blocking, zero mass and infinite stiffness for rigid body motion or double negative parameters for backward wave propagation.

School of Mechanical Engineering Prof. Adrian J. Lew1

15 באוקטובר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Prof. Adrian J. Lew1

 

 

 

 

 

School of Mechanical Engineering Seminar
Monday, May 15, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

HIGH-FIDELITY SIMULATION OF BRITTLE FRACTURE PROBLEMS

WITH UNIVERSAL MESHES

 

Prof. Adrian J. Lew1

1 Department of Mechanical Engineering, Stanford University

Durand 207, Stanford, USA

e-mail: lewa@stanford.edu

 

 

We describe our approach to simulating curvilinear brittle fractures in two-dimensions based on the use of Universal Meshes. A Universal Mesh is one that can be used to mesh a class of geometries by slightly perturbing some nodes in the mesh, and hence the name universal. In this way, as the crack evolves, the Universal Mesh is always deformed so as to exactly mesh the crack surface. The advantages of such an approach are: (a) no elements are cut by the crack, (b) new meshes are automatically obtained as the crack evolves, (c) the crack faces are exactly meshed with a conforming mesh at all times, and the quality of the surface meshing guaranteed to be good, and (d) apart from duplicating degrees of freedom when the crack grows, the connectivity of the mesh and the sparsity of the associated stiffness matrix remains unaltered. In addition to the mesh, we are now able to compute stress intensity factors with any order of convergence, which gives us unprecedented accuracy in computing the crack evolution. As a result, we observe first-order convergence of the crack path as well as the tangent to the crack path in a number of different examples. In the presentation I will introduce the notion of a Universal Mesh, illustrate the progress we have made so far with some examples, and then focus on the simulation of curvilinear fractures, and on the tools we created to compute stress intensity factors. In particular, showing examples in which the computed crack path converges to the exact crack path, regardless of the mesh. If time permits, simulation of thermally induced fracture and hydraulic fractures will be discussed.

 

 

Adrian J. Lew is an Associate Professor of Mechanical Engineering at Stanford University, and the Lee Otterson Faculty Scholar. He graduated with the degree of Nuclear Engineer from the Instituto Balseiro in Argentina and received his M.Sc. and doctoral degrees in Aeronautics from the CalTech. He has been awarded Young Investigator Award by the International Association for Computational Mechanics, the ONR Young Investigator Award, the NSF Career Award, and the Ferdinand P. Beer & Russel Johnston, Jr., Outstanding New Mechanics Educator Award from the American Society of Engineering Education. He has also received an honorable mention by the Federal Communication Commission for the creation of the Virtual Braille Keyboard. He served as the North-American co-chair of the XII Pan American Congress in Applied Mechanics, which took place in January 2012, and in the organizing committee of the first Pan American Congress on Computational Mechanics, which took place in Buenos Aires in April 2015. He has also co-founded iBrailler, which produces iBrailler Notes, an app to type Braille in an iPad.

 

 

ארגון עמיתי התעשייה מהדק את הקשר עם החברות המובילות בשוק

09 אוקטובר 2018
כנס משאבי אנוש

כבר שש שנים שארגון עמיתי התעשיה (IAP – Industrial Affiliates Program) פועל לטיפוח והעצמת הקשר שבין האקדמיה לתעשייה. פן משמעותי בשיתוף הפעולה הנו קשרי HR, שתכליתו גיוס והשמת הסטודנטים והבוגרים של הפקולטה. במהלך העבודה המשותפת נבנו עם השנים פעילויות שונות בתחום הגיוס, ההדרכה, המחקר והפנאי, ומחלקות משאבי אנוש היו הכוח המניע.

עם שוך תלאות החגים ורגע לפני שהסטודנטים חוזרים אל ספסל הלימודים ועבודת הגיוס תופסת שוב תאוצה, שמחנו לנצל את רגעי המנוחה כדי להזמין את נציגות ונציגי HR לבוקר של כיף בפקולטה.

 

המפגש, שמתקיים זו השנה השנייה ברציפות, נפתח עם היכרות וארוחת בוקר קלילה עם מנהלות ומנהלי משאבי אנוש של החברות המובילות בתעשייה. פרופ' דוד מנדלוביץ, יו"ר IAP, הציג את הארגון ומטרותיו. הגברת פנינה אפרתי, משנה מנהלי לדקאן, הציגה את "פרופיל הסטודנטים והבוגרים שלנו". סיגלית בן חיון, מנהלת ארגון בוגרי אוניברסיטת תל אביב, ציינה את היתרונות לקשר הרציף עם בוגרי הפקולטה ובכלל.

 

בהמשך התקיים שיח פתוח ופורה בו נשאלו שאלות רבות לגבי שיתופי הפעולה ועלו רעיונות חדשים ומקוריים שבעתיד הקרוב נראה יוצאים לפועל. לקינוח נהנינו מההרצאה המרתקת של ד"ר רג'א ג'יריס על אחד מהמושגים החמים ביותר ב-2018 בעולם ההיי-טק - "למידה עמוקה על קצה המזלג".

לתמונות נוספות מהמפגש

EE Seminar: Co- Occurring Clusters Denoising

24 באוקטובר 2018, 15:30 
חדר 011, בניין כיתות-חשמל  

Speaker: Yair Shefi

M.Sc. student under the supervision of Prof. Shai Avidan and Yacov Hel-Or

 

Wednesday, October 24th 2018 at 15:30

Room 011, Kitot Bldg., Faculty of Engineering

 

Co- Occurring Clusters Denoising

 

Abstract

 

We suggest a method called Co- Occurring Context (CoC) denoising which applies a new prior to natural images, sparse labels Co-Occurrence matrix.

 We suggest achieving high image restoration by decreasing the elements count in the

Co-Occurrence matrix. Our Co-Occurrence matrix is a statistical representation of the pixels labels created by a clustering algorithm, exposing the statistical connection of two labels been assigned in nearby spatial window. We implement context clustering by using this prior to regularize our clustering objective function.

Context clustering prefer labels that can blend in their spatial neighborhood hence preserve context. Our denoising method takes advantage of the sub-problem and creates a restoration to each cluster separately using simple yet very effective method.

EE S3eminar: Learn Stereo, Infer Mono: Siamese Networks for Unsupervised, Monocular, Depth Estimation

17 באוקטובר 2018, 16:00 
חדר 206, בניין וולפסון הנדסת מכונות  

 

Speaker: Matan Goldman

M.Sc. student under the supervision of Prof. Tal Hassner and Prof. Shai Avidan

 

Wednesday, Oct 17th 2018 at 15:30

Room 206, Wolfson Mechanical Eng. Bldg., Faculty of Engineering

 

Learn Stereo, Infer Mono: Siamese Networks for Unsupervised, Monocular, Depth Estimation

 

Abstract

The field of unsupervised monocular depth estimation has seen huge advancements in recent years. Most methods assume stereo data is available during training but usually under-utilize it and only treat it as a reference signal. We propose a novel unsupervised approach which uses both left and right images equally during training, but can still be used with a single input image input at test time, for monocular depth estimation. Our Siamese network architecture consists of two, twin networks, each learns to predict a disparity map from a single image. At test time, however, only one of these networks is used in order to infer depth. We show state-of-the-art results on the standard KITTI Eigen split benchmark as well as being the highest scoring unsupervised method on the new KITTI single view benchmark. To demonstrate the ability of our method to generalize to new data sets, we further provide results on the Make3D benchmark, which was not used during training.

EE Seminar: Comparison of Single Sensor Emitter Localization Techniques

17 באוקטובר 2018, 15:30 
חדר 206, בניין וולפסון הנדסת מכונות  

Speaker: Nadav Shitrit

M.Sc. student under the supervision of Prof. Anthony J. Weiss.

 

Wednesday, October 17th, 2018 at 15:00

Room 206, Wolfson Mechanical Eng. Bldg., Faculty of Engineering

 

Comparison of Single Sensor Emitter Localization Techniques

 

Abstract

 

Direct Position Determination (DPD) is a novel method for the geolocation of trans-mitters. The DPD method uses the same data as common methods, except that the location estimation is based on exact maximum likelihood. We present and evaluate an algorithm for the DPD approach, assuming a single moving receiver collecting samples of continuous wave signals produced by a static emitter.

Our approach to the geolocation problem is based on time domain DPD using the complex envelope of the received signal. Similar problems are often solved by the phase unwrapping (PU) procedure. As shown in previous works, the PU method can achieve accurate results; however, its accuracy decreases in the face of errors such as cycle slips.

We compare the performance of the DPD and PU algorithms by computing an expression for the well-known Cramér-Rao Lower Bound (CRLB). Furthermore, we simplify the obtained expression based on flight trajectory restrictions up to compact form. This enables us to analyze the relationship between familiar properties (such as the carrier wavelength and signal-to-noise ratio) and the geolocation accuracy. Perfor-mance is evaluated by Small Error Analysis (SEA).

Monte Carlo simulations are used to corroborate the analytical results. Our analysis shows that both methods converge at a high signal-to-noise ratio (SNR). However, a significant advantage is obtained using DPD over the PU at low SNR.

 

EE Seminar: two lectures by Jordan Hashemi & Anish Simhal from Duke University

15 באוקטובר 2018, 15:00 
חדר 206, בניין וולפסון הנדסת מכונות  

(The talk will be given in English)

 

Speaker:     Dr. Jordan Hashemi and Dr. Anish Simhal
                   Duke University

 

Monday, October 15th, 2018
15:00 - 16:00

Room 206, Wolfson Mechanical Eng. Bldg., Faculty of Engineering

 

Each lecture will be 30 min.

 

The first (15:00-15:30) will be given by Jordan Hashemi

Computer Vision and Machine Learning for Computational Psychiatry

Observational assessments are critical for screening, diagnosing, and monitoring developmental disorders. However, current tools for objectively measuring young children’s observed behaviors are expensive, time-consuming, and require extensive training and professional administration. This lack of scalable, reliable, and validated tools impacts access to evidence-based knowledge and limits our capacity to collect population-level data in non-clinical, naturalistic settings. To address this gap, we developed a mobile paradigm to collect videos of young children while they watched movies designed to elicit autism-related behaviors and then used computer vision to automatically code behavioral responses of these videos. This mobile paradigm has allowed for one of the largest video data collections for autism and the discovery of novel biomarkers. In this talk, we will go into detail about our paradigm and demonstrate its impact towards scalable, objective behavioral coding for screening and monitoring children's development.

 

The second (15:30-16:00) will be given by Anish Simhal

A Computational Synaptic Antibody Characterization Tool for Array Tomography

Application-specific validation of antibodies is a critical prerequisite for their successful use. Here we introduce an automated framework for characterization and screening of antibodies against synaptic molecules for high-resolution immunofluorescence array tomography (AT). The proposed Synaptic Antibody Characterization Tool (SACT) is designed to provide an automatic, robust, flexible, and efficient tool for antibody characterization at scale. SACT automatically detects puncta of immunofluorescence labeling from candidate antibodies and determines whether a punctum belongs to a synapse. The molecular composition and size of the target synapses expected to contain the antigen is determined by the user, based on biological knowledge. Operationally, the presence of a synapse is defined by the colocalization or adjacency of the candidate antibody punctum to one or more reference antibody puncta. The outputs of SACT are automatically computed measurements such as target synapse density and target specificity ratio that reflect the sensitivity and specificity of immunolabeling with a given candidate antibody. These measurements provide an objective way to characterize and compare the performance of different antibodies against the same target, and can be used to objectively select the antibodies best suited for AT and potentially for other immunolabeling applications.

Moving Hairs: Towards adaptive, homeostatic materials

08 באוקטובר 2018, 16:00 
הפקולטה להנדסה אוניברסיטת תל-אביב  
0

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>