תחומים:

בחר הכל

משפטים

כללי

הנדסה

ASV

מערכות קוונטיות

תחבורה חכמה

רכב אוטונומי

קול קורא

מכונת הנשמה

COVID-19

מטא-חומרים...

הנדסת חשמל

הנדסה מכנית

אולטרה-סגול

אולטרה-סגול

RoboBoat

MRI

קטגוריות:

בחר הכל

פוקוס

מחקר בפקולטה

מחקר

כנס

ברכות

פרס

חדשות

NEWS

מה מעניין אותך?

כל הנושאים
Remote sensing of waves
AI
Cyber Security
Geophysical and environmental fluid dynamics
exotic mechanics
Environmental implications
environment
drone
Deep learning
CO2 storage
Health
chemical oxidation
Biomimicry
Biomimetics
Biomedical
Bioelectronics
Beetles
groundwater
Hemodynamics and Biomechanics
Radio Physics and Engineering
nanotechnologies
Optics
optical nanosensors
oil and natural gas
nanomaterials
Numerical models
numerical modelling
Nanoelectronics
Nonlinear optics
Molecular Electronics
Nanophotonics
Metamaterials
Mechanical Engineering
Interfacial Phenomena
materials for water
בתמונה מימין לשמאל: ד"ר גילי ביסקר, עדי בן-ארי ולירון בן-ארי

מחקר

26.12.2021
מוציאים את שיווי המשקל מהמשוואה

סטודנטים מתוכנית המצטיינים של הפקולטה להנדסה, בהנחיית ד"ר ביסקר, פיתחו סימולציית מחשב לחיזוי הדינמיקה של מערכות ביולוגיות מחוץ לשיווי משקל תרמודינמי

  • מחקר
  • הנדסה ביו-רפואית

עדי בן-ארי ולירון בן-ארי הם סטודנטים להנדסת חשמל ופיזיקה, בשנה ד' ובתוכנית המצטיינים של הפקולטה להנדסה. אין זה במקרה שיש להם שם משפחה זהה, מדובר על תאומים זהים עם גאווה כפולה במיוחד לאור העובדה שמאמרם פורסם לראשונה החודש במגזין המדעי והיוקרתי The Journal of Chemical Physics. המאמר נכתב בהנחייתה של ד"ר גילי ביסקר, בנושא:  "Nonequilibrium self-assembly of multiple stored targets in a dimer-based system"

 

ד"ר ביסקר מפתחת במעבדה שלה ננו-חיישנים אופטיים תוך שימוש בתכונות האופטיות של ננו-צינוריות מפחמן כדי לזהות ולכמת מולקולות ביולוגיות בצורה ספציפית וסלקטיבית. בנוסף, היא חוקרת מערכות מורכבות מחוץ לשיווי משקל תרמודינמי, בהשראת מערכות ביולוגיות.

 

מערכות הרכבה עצמית

במערכות רבות, ובפרט בגוף האדם, מתרחשים תהליכים של הרכבה עצמית – תהליכים בהם מספר אבני בניין, כמו חלבונים, מסתדרים במבנה מסוים שנחוץ לפעולה ביולוגית ספציפית. כאשר תהליכי הרכבה עצמית מתרחשים בשיווי משקל תרמודינמי, כאשר חום נכנס מהסביבה או יוצא אליה רק באופן איטי ומבוקר, ניתן לתאר אותם ולחזות את תוצאותיהם מתוך התורה של מכניקה סטטיסטית בשיווי משקל.

אולם, תהליכים בגוף האדם מתאפיינים בחוסר שיווי משקל ואינם הפיכים, מה שמצריך כלים מתקדמים יותר על מנת לנתח אותם. במחקר, מודלה מערכת כללית של אבני בניין משני סוגים שונים שיכולות לשחזר מספר מבני מטרה, בהשראת מערכות ביולוגיות.

 

באמצעות סימולציות מחשב של המערכת, בהן הדינמיקה הוצאה משיווי משקל על ידי כוח לוקאלי (מקומי) – שמשפיע על האינטראקציה בין אבני בניין שכנות, הצליחו החוקרים להדגים מספר תכונות מעניינות. למשל, התאפשרה הרכבה של מבני המטרה מתוך מבנים התחלתיים קטנים יותר ביחס לאלו הנחוצים בשיווי משקל, הוגדלו מספר מבני המטרה שניתן לקודד למערכת, וכן שופרו היציבות ומהירות ההרכבה.

איור מתוך המאמר: סימולציה של הדינמיקה של המערכת. ככל שהזמן עובר, מצטרפים עוד חלקיקים לגרעין ההתחלתי ומבנה המטרה מורכב. בנוסף לחלק שחופף למבנה המטרה (בירוק), נבנים גם מבנים שגויים, שאינם שייכים למבנה המטרה (באדום).

 

איך המחקר יכול לסייע בעתיד?

מחקר זה יוכל לסייע בתכנון ושיפור מערכות המסוגלות לאחסן מספר מבני מטרה ולשחזר אותם, למשל חומרים מסתגלים שיכולים להסתדר במבנים שונים כתלות בתנאים חיצוניים. בפרט, הקטנת המבנים ההתחלתיים הדרושים, כפי שהוצג במחקר, יכולה להוות בסיס לאחסון יעיל יותר של מידע באמצעות מערכות מורכבות.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

ד"ר גילי ביסקר (משמאל) ומנהלת המעבדה ד״ר עדי הנדלר-נוימרק

מחקר

13.12.2021
תולעים זורחות

לראשונה, חוקרות מהנדסה ביו-רפואית הצליחו בעזרת ננו-צינוריות מפחמן לבצע מעקב בתוך תולעים מבלי שתהיה הפרעה של אוטופלורנסציה מהתולעת עצמה

  • מחקר
  • הנדסה ביו-רפואית

מולקולות או חלקיקים פלורסנטים, הפולטים אור באורך גל מסויים בעקבות עירורם באור בעל אורך גל קצר יותר, מהווים כלי נפוץ במחקרים רבים. לרוב, חוקרים משתמשים בצבענים פלורסנטים על מנת לסמן ולעקוב אחר חלבונים או מטרות ברקמות שונות בתוך חיות מודל. במקרה של תולעים, הסימון לא פשוט בכלל, היות ולתולעת עצמה יש חלבונים שפולטים פלורסנציה בתחום האור הנראה באורכי גל זהים לאורכי הגל בהם פולטים הצבענים הפלורסנטיים.

 

בעזרת פיתוח חדש, המבוסס על ננו צינוריות מפחמן של ד"ר ביסקר, הודגמה יכולת דימות ומעקב בתוך התולעים מבלי שתהיה הפרעה של אוטופלורנסציה מהתולעת עצמה, בזכות הפליטה הפלורסנטית של ננו-הצינוריות בתחום האינפרא-אדום הקרוב.

 

עבודתה של ד"ר גילי ביסקר ומנהלת המעבדה שלה ד״ר עדי הנדלר-נוימרק בנושא, התפרסמה בכתב העת המדעי Materials Today Bio בה הן חושפת את השיטה החדשנית למעקב אחר ננו-הצינוריות מפחמן בתוך תולעים. במחקר הייתה שותפה גם ד״ר ורנה וולף, פוסטדוקטורנטית במעבדתה של גילי.

 

ד"ר ביסקר מפתחת במעבדה שלה ננו-חיישנים אופטיים תוך שימוש בתכונות האופטיות של ננו-הצינוריות מפחמן כדי לזהות ולכמת מולקולות מטרה בצורה ספציפית וסלקטיבית. החיישנים מבוססים על ננו-צינוריות מפחמן הפולטות פלורסנציה בתחום האינפרא-אדום הקרוב, וכך מתאפשר לראות עמוק יותר בתוך הרקמה ובדוגמאות ביולוגיות, ולשפר את היחס בין האות לרעש.

 

תולעים כחיית מודל

תולעים משמשות חיית מודל נפוצה בזכות דמיון גנטי גבוה לבני אדם בגנים מחוללי מחלות כמו למשל במחלת הפרקינסון. למרות היתרונות הרבים שלהן כגון גודלן הקטן ושקיפותן, חסרון אחד משמעותי הוא האוטופלורסנציה שלהן בכל התחום הנראה, הנובעת מחלבונים שנמצאים בתוך התולעת עצמה הפולטים פלורסנציה. חסרון זה קיים לא רק בתולעים, אלא בחיות מודל רבות, עובדה המקשה מאוד על שימוש בצבענים או חלבונים פלורסנטים סינתטיים, היות ולא ניתן להפריד בין החלבונים הפלורסנטים הטבעיים של האורגניזמים לבין הצבען הפלורסנטי הסינתטי.

תמונה מהמאמר: בשורה העליונה ניתן לראות תמונות פלורסנטיות של התולעים במספר אורכי גל, התמונה השמאלית (NIR) היא של ננו-הצינוריות (אדום). התמונה האמצעית (DAPI+NIR) והימנית (GFP+NIR) הן תמונות משולבות של ננו-הצינוריות מפחמן באדום עם התמונות של האוטופלורסנציה של התולעת באורך גל המתאים לצבע הפלורסנטי הסינתטי DAPI או GFP (כחול או ירוק). בשורה השנייה התמונות הפלורסנטיות מוצגות על גבי תמונה באור לבן של התולעים, על מנת למקם את ננו-הצינוריות ביחס למעי של התולעת.

 

החוקרות השתמשו בננו-צינוריות מפחמן אשר פולטות פלורסנציה בתחום האינפרא אדום הקרוב – זהו תחום ספקטרלי בו אין אוטופלורסנציה כלל. "באמצעות ננו-הצינוריות הצלחנו לעקוב אחר פעילות העיכול של התולעים, לראות את המעבר שלהן בוושט עד צינור המעי, ולנטר את פעילות השאיבה של האוכל", מסבירה ד"ר הנדלר-נוימרק.

 

לדברי ד״ר ביסקר, ״הננו-חלקיקים הללו מתאימים לעבודה עם דוגמאות ביולוגיות ואינם פוגעים בהן, ולכן מאפשרים לעקוב אחר תהליכים בתוך אורגניזמים או תאים חיים ללא הפרעה של האוטופלורנסנציה הטבעית שלהם. השימוש בננו-צינוריות מפחמן יכול להוות יתרון משמעותי במעקב אחר תהליכים בחיות מודל קטנות כמו תולעים וגם לעקוף לחלוטין את האתגר של אוטופלורסנציה בתחום האור הנראה״.

 

אלה שמתאהבות בבעיה הן אלה שממציאות לה פתרון

נגיף הקורונה בכלי דם

מחקר

09.11.2021
מחקר חדש שהתפרסם בכתב העת eLife מראה כי ניתן לזהות את החלבונים בנגיף הקורונה

המחקר נערך בשיתוף חוקרים מהנדסה ביו-רפואית, בית הספר סגול למדעי המוח, מדעי המחשב והאוניברסיטה העברית

  • מחקר
  • הנדסה ביו-רפואית

כמעט שנתיים אחרי שהפכה למגפה עולמית, שקטלה מיליוני בני אדם, עדיין לא נפתרה התעלומה אילו חלבונים בנגיף ה-SARA-CoV-19 אחראים לנזק החמור לכלי הדם שעשוי אף להוביל להתקף לב או לשבץ. כעת, צוות מומחים בהובלת אוניברסיטת תל אביב הצליח לזהות לראשונה חמישה חלבונים מבין 29 החלבונים המרכיבים את הנגיף שאחראים לפגיעה בכלי הדם. החוקרים מקווים כי זיהוי החלבונים יסייע בפיתוח תרופות ייעודיות לקורונה ויביא להפחתת הפגיעה בכלי הדם.

 

המחקר נערך בהובלת קבוצות המחקר של ד"ר בן מעוז מהמחלקה להנדסה ביו-רפואית ובית הספר סגול למדעי המוח, פרופ' אורי אשרי מבית הספר סגול למדעי המוח והפקולטה למדעי החיים, ופרופ' רודד שרן מבית הספר למדעי המחשב ע"ש בלווטניק - כולם חוקרים באוניברסיטת תל אביב. במחקר השתתפו גם פרופ' יעקב נחמיאס מהמכון למדעי החיים באוניברסיטה העברית, והחוקרים ד״ר רוסאנה ראוטי, ד״ר יעל ברדוגו והדוקטורנט מיישר שחוח מאוניברסיטת תל אביב. תוצאות המחקר החדש התפרסמו בכתב העת eLife.

 

"אנחנו רואים שכיחות גבוהה מאוד של מחלות כלי דם וקרישת דם, דוגמת שבץ והתקף לב, בקרב חולי קורונה", מסביר ד"ר בן מעוז. "אנחנו רגילים לחשוב על קורונה כעל מחלה נשימתית בעיקרה, אבל האמת היא שחולי קורונה נמצאים בסיכון מוגבר עד פי שלושה לעבור שבץ או התקף לב למשל. כל העדויות מראות שהנגיף פוגע קשות בכלי הדם או בתאי האנדותל העוטפים את כלי הדם. אלא שעד היום התייחסו לנגיף כולו כאל מקשה אחת. אנחנו רצינו לגלות אילו חלבונים בתוך הנגיף אחראים לנזק הזה".

 

נגיף הקורונה החדש הוא נגיף פשוט יחסית – והוא מורכב בסך הכול מ-29 חלבונים שונים (לעומת עשרות אלפי חלבונים שמייצר גוף האדם). החוקרים מאוניברסיטת תל אביב השתמשו ב-RNA של כל אחד מחלבוני הקורונה ובדקו את התגובה שנוצרת כאשר מחדירים את רצפי ה-RNA השונים לתאים אנושיים של כלי דם במעבדה, וכך הצליחו לזהות חמישה חלבוני קורונה שפוגעים בכלי הדם.

 

"כשנגיף הקורונה חודר לגוף, הוא מתחיל לייצר 29 חלבונים, נוצר נגיף חדש, הוא מייצר 29 חלבונים חדשים וכך הלאה", מספר ד"ר מעוז. "בתהליך הזה, כלי הדם שלנו הופכים מצינורות אטומים למעין רשתות או חתיכות בד חדירות, ובמקביל חלה הגברה בקרישת הדם. אנחנו בדקנו ביסודיות את ההשפעה של כל אחד מ-29 החלבונים שהנגיף מבטא, והצלחנו לראשונה לזהות חמישה חלבונים ספציפיים שמחוללים את הנזק הגדול ביותר לתאי האנדותל ומכאן גם ליציבות ולתפקוד כלי הדם. בנוסף, השתמשנו במודל חישובי שפותח על ידי פרופ' שרן, המאפשר לשער ולזהות אילו מחלבוני הקורונה הם בעלי ההשפעה הגדולה ביותר על רקמות נוספות פרק לכלי הדם, וזאת מבלי שראינו אותם ב'פעולה' במעבדה".

 

לדברי ד"ר מעוז, לזיהוי החלבונים עשויות להיות השלכות משמעותיות במאבק במחלה. "המחקר שלנו יכול לסייע במציאת מטרות לתרופה שתשמש לעצירת פעילותו של הנגיף, או לפחות למזעור הנזק בכלי הדם".

 

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>