ד"ר אנז'ליקה אלקן

ד"ר אנז'ליקה אלקן

סיימה דוקטורט בחומרים ומדע מולקולרי במכון ויצמן

סיימה פוסט דוקטורט מדע והנדסה כימית וביו מולקולרית באוניברסיטת יוסטון

ופיזיקה של מערכות מורכבות במכון ויצמן

Physical Electronics Seminar :Management of electromagnetic scattering with spatially and temporally modulated structured environment

סמינר שמיעה לתלמידי תואר שני ושלישי

24 בדצמבר 2024, 15:00 
Room 512 Tochna Building  
Physical Electronics Seminar :Management of electromagnetic scattering with spatially and temporally modulated structured environment

 

  -סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני ושלישי-  This Seminar Is Considered A Hearing Seminar For Msc/Phd Students

 

EE Seminar: Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

25 בדצמבר 2024, 15:00 
אולם 011, בניין כיתות-חשמל  
EE Seminar: Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

Electrical Engineering Systems Seminar

 

Speaker: Shahar Zuler

M.Sc. student under the supervision of Dr. Dan Raviv

 

Wednesday, 25th December 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

 

Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

 

Abstract

The ability to map left ventricle (LV) myocardial motion using computed tomography angiography (CTA) is essential to diagnosing cardiovascular conditions and guiding interventional procedures. Due to their inherent locality, conventional neural networks typically have difficulty predicting subtle tangential movements, which considerably lessens the level of precision at which myocardium three-dimensional (3D) mapping can be performed. Using 3D optical flow techniques and Functional Maps (FMs), we present a comprehensive approach to address this problem. FMs are known for their capacity to capture global geometric features, thus providing a fuller understanding of 3D geometry. As an alternative to traditional segmentation-based priors, we employ surface-based two-dimensional (2D) constraints derived from spectral correspondence methods. Our 3D deep learning architecture, based on the ARFlow model, is optimized to handle complex 3D motion analysis tasks. By incorporating FMs, we can capture the subtle tangential movements of the myocardium surface precisely, hence significantly improving the accuracy of 3D mapping of the myocardium. The experimental results confirm the effectiveness of this method in enhancing myocardium motion analysis. This approach can contribute to improving cardiovascular diagnosis and treatment.

Our code and additional resources are available at: https://shaharzuler.github.io/CardioSpectrumPage

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

LMI Special Seminar: Quantum measurement through parametric amplification

31 בדצמבר 2024, 15:30 
הפקולטה להנדסה אוניברסיטת תל אביב, בנין כיתות ,אולם 011  
LMI Special Seminar: Quantum measurement through parametric amplification

 

EE Seminar: Making Neural Networks Linear Again: Projection and Beyond

סמינר שמיעה לתלמידי תואר שני ושלישי

23 בדצמבר 2024, 12:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Making Neural Networks Linear Again: Projection and Beyond

(The talk will be given in English)

 

Speaker:     Dr. Assaf Shocher

                              NVIDIA

                          

011 hall, Electrical Engineering-Kitot Building‏

Monday, December 23rd, 2024

12:00 - 13:00

 

Making Neural Networks Linear Again: Projection and Beyond

 

Abstract

Every day, somewhere, a researcher mutters, “If only neural networks were linear, this problem would be solved”. Linear operations offer powerful tools: projection onto subspaces, eigen decomposition, and more. This talk explores their equivalents in the non-linear world of neural networks, with a special focus on projection, generalized by idempotent operators- operators that satisfy f(f(x)) = f(x).

Idempotent Generative Network (IGN) is a generative model that is trained by enforcing two main objectives: (1) target distribution data map to themselves f(x) = x, defining the target manifold, and (2) latents project onto this manifold via the idempotence condition f(f(z)) = f(z). IGN generates data in a single step, but can iteratively refine, and projects corrupted data back onto the distribution.

This projection ability gives rise to Idempotent Test-Time Training (IT³), a method to adapt models at test time using only current out-of-distribution (OOD) input. During training, the model f receives an input x along with either the ground truth label y or a neutral "don't know" signal . At test-time, given corrupted/OOD input x, a brief training session minimizes ||f(x, f(x, )) - f(x, )||, making f(x,) idempotent. IT³ works across architectures and tasks, demonstrated for MLPs, CNNs, and GNNs on corrupted images, tabular data, OOD facial age prediction, and aerodynamic predictions.

Finally, I'll ask: "Who says neural networks are non-linear?" They're only non-linear with respect to the standard vector spaces! In an ongoing work, we construct vector spaces X, Y with their own addition, negation, and scalar multiplication, where f: X → Y becomes truly linear. This enables novel applications including spectral decomposition, zero-shot solutions to non-linear inverse problems via Pseudo-Inverse, and architecture-enforced idempotence.

Short Bio

I am a postdoctoral researcher at NVIDIA. Prior to that I was a postdoctoral fellow at UC Berkeley, working with Alyosha Efros, and a visiting researcher at Google. I received my PhD from the Weizmann Institute of Science, where I was advised by Michal Irani. I have bachelor's degrees in Physics and EE from Ben-Gurion University. My prizes and honors include the Rothschild postdoctoral fellowship, the Fulbright postdoctoral fellowship, John F. Kennedy award for outstanding Ph.D. at the Weizmann Institute, and the Blavatnik award for CS Ph.D. graduates.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 


 

טקס חלוקת התארים לבוגרי.ות ומוסמכי.ות ביה"ס להנדסת חשמל יתקיים ב-16.6.2025

 

טקס חלוקת התארים לבוגרי.ות ומוסמכי.ות ביה"ס להנדסה מכנית, התוכנית להנדסת סביבה, התוכנית להנדסת מערכות, והמחלקות להנדסת תעשייה, הנדסה ביו רפואית ומדע והנדסה של חומרים יתקיים ב-17.6.2025

 

על מנת להיכלל ברשימת מקבלי ומקבלות התעודות בטקסים אלו יש לסיים את כל החובות לתואר  ולפתוח טופס סיום לימודים לא יאוחר מה-10.3.2025.

לא תהיה אפשרות להיכלל ברשימת המסיימים למי שיסיים לאחר מועד זה

ד"ר איתי ספקטור :Advanced Histology, Cytology and Machine learning based Quantitative Image Analysis in Pre-clinical Research

סמינר פרונטלי לתלמידי תואר שני ושלישי

19 בינואר 2025, 14:00 
אוניברסיטת תל אביב  
 ד"ר איתי ספקטור :Advanced Histology, Cytology and Machine learning based Quantitative Image Analysis in Pre-clinical Research

:Abstract

Histology and Cytology play a critical role in biomedical research by enabling the detection and analysis of tissue and cell- Morphology, abnormalities, protein and RNA expression and treatments effects. Over the past decade, significant advancements have transformed this field, including the development of synthetic biomarkers and new methods that enable the use of multiple fluorescence-labeled antibodies and RNA probes on single sample section. Additionally, innovations in confocal microscopy and high-resolution slides scanning microscopes have greatly improved imaging capabilities. The emergence of Machine learning based Quantitative Image Analysis- that enables precise analysis of histology and cytology large datasets (i.e. cell populations, distances between cell populations, expression level in each cell population), patterns recognition (i.e. blood vessels populations detection and analysis, neuronal and collagen fibers parameters analysis etc.).
Together- these advancements in Histology and cytology, microscopy and image analysis- enable researchers to extract high quantity of data from each sample section, enabling accurate quantitative evaluation of basic research data and treatments effects.
In this seminar, I will present the main Histology, Cytology and Machine learning based Quantitative Image Analysis (HCA) methodologies and innovations in relevant research fields, providing examples in different cells, tissues and animal models. This will equip researchers with a better understanding of .how to apply these cutting-edge HCA techniques to their own .studies 

מר אבירם סושרד מנכ"ל פיליפס ישראל AI and the future of medicine

22 בדצמבר 2024, 14:00 
אוניברסיטת תל אביב  
 מר אבירם סושרד מנכ"ל פיליפס ישראל AI and the future of medicine

 AI and the future of medicine

Physical Electronics Seminar :Liquid light in synthetic lattices for frequency comb generation

סמינר שמיעה לתלמידי תואר שני ושלישי

17 בדצמבר 2024, 13:30 
Room 011 Kitot Building  
Physical Electronics Seminar :Liquid light in synthetic lattices for frequency comb generation

 

  -סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני ושלישי-  This Seminar Is Considered A Hearing Seminar For Msc/Phd Students

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>