EE ZOOM Seminar: HIGH POWER DYNAMIC STRUCTURED LIGHT 3D RECONSTRUCTION SYSTEM BASED ON RESONANCE DOMAIN DIFFRACTIVE OPTICS

30 באפריל 2020, 15:00 
 

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני, למי שמתחבר לסמינר דרך הזום.

 

 

You are invited to attend a lecture On Thursday, 30 April 2020, 15:00

 

Join Zoom Meeting
https://us04web.zoom.us/j/73978006567

 

 

HIGH POWER DYNAMIC STRUCTURED LIGHT 3D RECONSTRUCTION SYSTEM BASED ON RESONANCE DOMAIN DIFFRACTIVE OPTICS

 

By:

Omer Stein

 

M.Sc student under  the supervision of Prof. Michael Golub,

Prof. Menachem Nathan, Prof. Shlomo Ruschin

 

 

Abstract

 

Structured light is one of the most common 3D data acquisition technique used in industry. Traditionally, structured light methods are used to obtain 3D information of an object, using predetermined illumination patterns to encode spatial data for later triangulation and reconstruction. A multitude of pattern types exist, which achieve varying degrees of depth resolution, depending on the needs of the user and the demand on the system. Means of projecting these patterns vary as well, including off the shelf DLP projectors, scanning mirror laser projectors and diffractive optics based laser projectors. Diffractive optics based projectors are one of the most cost effective and power efficient options, but are limited in projection angles. Traditional DLP or scanning mirror projectors can have high angles of projection, but can be very large and power consuming, lack illumination power, or present an eye safety hazard. In this work, we show the feasibility of a gray coded structured light 3D reconstruction system, based on resonance domain diffractive optical elements previously developed by our group, which allow for wide fanout angles with very high diffraction efficiency and close to diffraction-limited fidelity of the projected intensity patterns, leading to a compact, low cost, high preforming 3D reconstruction system. We present the design, characteristics, simulation and experimental results of our proposed setup, using real world objects, and compare our results with comparable commercially available projectors.

 

 

Biomechanical Numerical Simulations of Calcific Aortic Valve Disease in Bicuspid Valves: New Biomechanical Modeling for Treatment Planning

22 ביוני 2020, 14:00 - 15:00 
בניין וולפסון 206  
0
Biomechanical Numerical Simulations of Calcific Aortic Valve Disease in Bicuspid Valves: New Biomechanical Modeling for Treatment Planning

~~

"ZOOM" SEMINAR
Monday, June 22, 2020 at 14:00
Biomechanical Numerical Simulations of Calcific Aortic Valve Disease in Bicuspid Valves: New Biomechanical Modeling for Treatment Planning

Karin Lavon
Under the supervision of Prof. Rami Haj-Ali and Prof. Ehud Raanani
School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
 karinlav@mail.tau.ac.il

Bicuspid aortic valve (BAV) is the most common type of congenital heart disease, occurring in 0.5-2% of the population, where the aortic valve has only two leaflets rather than the normal three. Calcific aortic valve disease (CAVD) is characterized in stiffened valve leaflets, which rapidly leads to aortic stenosis (AS). BAV patients constitute more than half the patients diagnosed with CAVD, which progresses rapidly compared to tricuspid aortic valves. Transcatheter aortic valve replacement (TAVR) is a treatment approach for CAVD where a stent with mounted bioprosthetic valve is deployed on the stenotic valve. Performing TAVR in calcified BAV patients has been only recently performed off-label, and raise concerns stemming from the asymmetrical structure of the BAV, which can cause partial anchoring and paravalvular leakage (PVL). This research aims to develop and utilize a new and refined numerical finite-element simulations for investigating the development of calcification in BAVs, and examine potential minimal invasive treatment approaches for those patients, such as balloon aortic valvuloplasty and TAVR deployment.
The clinical part of this study introduces a new Reverse Calcification Technique (RCT) that generates spatial calcified densities from computed tomography (CT) scans of pre-intervention AS patients, and capable of predicting the CAVD progression that leads to the current stage. The different calcification patterns of BAVs were characterized based on acquired CT scans of calcified BAV patients, taken from Sheba and Rabin medical centers. The CAVD patterns were compared to previous disease stages revealed by the RCT and compared to selected patients underwent more than one CT procedure in their past. Fluid–structure interaction (FSI) simulations were employed on calcified BAV models representing four stages of the disease, in order to investigate the contribution of hemodynamics to the calcification development.
A calcification fragmentation biomechanical model is introduced to study the balloon-valvuloplasty procedure aimed at expanding AV root and increase compliance. Towards that goal, six stenotic BAVs with varied calcification patterns were modeled by embedding their calcium deposits inside a parametric model of the BAV. The calcification fragmentation was modeled by deploying a balloon catheter inside the calcified valves, and applying a failure criterion for the calcium medium. The cracking patterns were found to be correlated to the RCT and calcification development patterns, suggesting a relation between the two. The deployments of self and balloon-expandable TAVR devices Join Zoom Meeting
inside a calcified BAV were simulated as well (Evolut and Sapien 3 devices, respectively). Their PVL was also calculated by CFD simulations. The Evolut stent was characterized in asymmetric and elliptic deployment, with lower anchoring forces compared with the Sapien 3. The Sapien 3 and Evolut PRO had comparable PVL values, reduced in half compared with the Evolut R.
The proposed clinical and biomechanical computational models in our study are shown to be effective towards future BAV patient-specific simulations to improve future treatment.

~~https://zoom.us/j/96584758181?pwd=WC9PMXdsYzJ3NFdEN2Q5ZUtOZEVjdz09
The meeting will be recorded and made available on the School’s site.

 

יום פתוח אונליין לתואר ראשון בהנדסה ביו-רפואית

הזמנה ל ZOOM תשלח בקרוב

14 במאי 2020, 17:00 - 19:00 
ZOOM  
יום פתוח אונליין לתואר ראשון בהנדסה ביו-רפואית
אם אתם רוצים להיות חלק מהמהפכה הבאה, אתם שייכים לכאן. הצטרפו לאלו שכבר נרשמו לתוכניות התואר הראשון בהנדסה ביו-רפואית. בואו לחקור ולהעמיק בנושאים מרתקים כמו: מדעי המידע בשירות הרפואה (כולל ביג-דאטה ולמידה עמוקה), תכנון והנדסת מערכות, מדעי המוח ועוד.
 
מתי?
יום חמישי, 14.5.2020
 
מה בתוכנית?
17:00-17:30 מדוע כדאי ללמוד הנדסה ביו-רפואית? ראש המחלקה, פרופ' אורי נבו
17:30-17:40 מסלולי לימוד ייחודיים בהנדסה ביו רפואית
17:40-18:10 חשיפה למחקרים במחלקה - הרצאות קצרות מאת חברי סגל המחלקה
18:10-18:40 סשן מיוחד בנושא וירוס הקורונה - חברי סגל המחלקה
18:40-19:00 פאנל סטודנטים ושאלות ותשובות
***לינק למפגש ZOOM ישלח בקרוב

פיתוח מדריך לאפליקציית וואטסאפ במגוון שפות בעל התאמה לצרכים למגזר השלישי

26 אפריל 2020
פיתוח מדריך לאפליקצית וואטסאפ במגוון שפות בעל התאמה לצרכים למגזר השלישי

משבר הקורונה הוביל את אזרחי העולם לבידוד ביתי וריחוק משפחתי וחברתי, מה שהביא לעלייה בשימוש הכלים הדיגיטליים כגון zoom ו - WhatsApp אך ישנו ציבור שלם במגזר הגיל השלישי שהמעבר לזירה הטכנולוגית לא בא לו בקלות. הפקולטה להנדסה התגייסה למציאת פתרון שיתן מענה לצרכי הגיל השלישי ותחושת חיבור לחברה.

 

סגל הפקולטה להנדסה באוניברסיטת תל אביב בשיתוף סטודנטים וסטודנטיות מבית הספר להנדסה מכנית והמחלקה להנדסה ביו- רפואית החליטו לנסות למצוא פתרון יצרתי כדי להקל על האוכלוסייה הקשישה אשר נמצאת בקשיים מאוד חזקים עקב משבר הקורונה: "מדריך לאפליקצית וואטסאפ במגוון שפות". מדריך קליל זה נבחן ע״י גורמים שונים תוך התייעצות עם הסגל לפסיכלוגיה קלינית באוניברסיטת תל אביב במטרה להבטיח התאמה לצרכי המבוגרים. "הגענו למסקנה שצריך ליצור את תחושת הביחד אצל אוכלוסיית הקשישים, שמרגישה מאוד בודדה" מסביר אור בנסון, סטודנט להנדסה מכנית.

בתמונה מימין לשמאל: בל קריגר, סטודנטית שנה שלישית להנדסה ביו-רפואית ואור בנסון, סטודנט שנה שלישית להנדסה מכנית

 

מה ניתן למצוא במדריך?

בהדרכה רוכזו את כל הנושאים הכי רלוונטיים כדי ליצור הבנה מיטבית אצל אוכלוסייה זו, שלפעמים בחלקה מתקשה מאוד בטכנולוגיה. ניתן למצוא בחוברת ההדרכה הסברים פשוטים כגון:

  • איך מורידים את אפליקציית ה - WhatsApp 
  • איך לפתוח קבוצה עם המשפחה או חבריהם 
  • כיצד לקיים שיחות ווידיאו
  • מה המשמעות של כל כפתור המופיע באפליקציה
  • כיצד להגדיל את הכתב ועוד כמה פיצ'רים נחמדים.

 

המצגות תורגמו למספר שפות: אנגלית, רוסית, ערבית וצפרתית. כאשר לכולם יש גישה נוחה.

 

הצוות היזמי

  • אור בנסון - סטודנט שנה שלישית להנדסה מכנית
  • בל קריגר - סטודנטית שנה שלישית להנדסה ביו-רפואית 
  • שירה אברמוביץ- הנדסה ביו-רפואית סטודנטית שנה שלישית
  • פרופ' רן גלעד-בכרך - הנדסה ביו-רפואית.
  • פרופ' ראמי חג'-עלי - ראש בית הספר להנדסה מכנית
  • פרופ' גל שפס - בית הספר למדעי הפסיכולוגיה

 

תודה לכל השותפים הנוספים שעזרו בפרויקט:

  • הודיה אביטבול- הנדסה ביו-רפואית סטודנטית שנה שלישית

  • ג'ואנה גולדנברג- הנדסה מכנית סטודנטית  שנה שלישית

  • רבקה טובמן - מדעי המחשב 

  • איליה ברסלבסקי הנדסה ביו-רפואית סטודנט שנה שלישית

  • ד"ר דלית קן-דרור פלדמן - מנחה משפטית, הקליניקה למשפט לטכנולוגיה ולסייבר - הפקולטה למשפטים, אוניברסיטת חיפה

 

לינק למדריך

https://www.whatsapptutorial.com/

למעוניינים להתנדב לפרויקט ניתן ליצור קשר עם אור בנסון במייל: orbenson@gmail.com

Microknot optical resonators and their applications

24 ביוני 2020, 14:00 - 15:00 
בניין וולפסון 206  
Microknot optical resonators and their applications

~~

PhD "ZOOM" SEMINAR
Wednesday, June 24, 2020 at 14:00
Microknot optical resonators and their applications
Alexandra Blank
PhD of Dr. Yoav Linzon
Resonating microstructures defined locally on optical fiber tapers are an attractive venue for researchers in the recent years. These engineered microstructures find use in various applications, including photonic filters, lasers, optomechanical light-matter interaction devices, and various sensing elements mimicking human smell and taste sensing system (gas and liquids sensors), known as electronic noses and electronic tongues.
The presented work is devoted to experimental and numerical investigations of the behaviour of microknot resonators (MKRs) defined locally on optical fiber tapers as a promising platform for gas and liquid sensing applications. We demonstrate the two-probe localized heating technique for MKR fusing intended for improving its optical performance and mechanical stability in size and circular profile. We show that an above-threefold dynamical range enhancement has been consistently achieved. The fused MKRs are found to maintain phase stability, as opposed to the unfused knots exhibiting a random phase drift. We prove that e-fusing improves the mechanical strength in the MKR, providing it with transferability that is of importance in sensing applications.
We investigate fused MKRs’ characteristics for in-liquid sensing both local, where the analyte is delivered to the packaged device and the remote sensing. We have suggested and demonstrated two deployment schemes, namely, folded configuration intended for remote sensing, and straight configuration on either hydrophilic or hydrophobic substrate intended for packaged integration of photonic sensors. We found that in folded configuration reversibility remained sustainable over approximately 50 cycles of operation, whereas in most cases of the straight configuration on glass substrate transmission drops to the noise level after a few dewetting cycles. We show that a hydrophobic PDMS substrate can be advantageous relating to surface chemistry as compared to a typical hydrophilic glass substrate. For all those configurations we demonstrated their persistent sensing capabilities and defined unique recognition plots in principle components space specific to pure and diluted volatile liquids tested.
We demonstrate a durable and simple humidity sensing approach based on index-sensitive interference spectroscopy of surface stress birefringence and incorporating tapered microfibers on a silicon substrate coated with an active polymer layer. We show theoretically that the transmission spectrum of coated tapers possess interference patterns induced by the stress applied to the taper due to the coating weight load. The coated device demonstrated persistent detection capability in humid environment and a linear response to calibrated analytes. For each volatile organic analyte tested we defined a calibration plot in principal component space.
Microstructured tapers, when untreated, amenable to low performance in terms of resonance depth (dynamical range), Q and mechanical fragility. In this work we performed a novel comprehensive numerical study of the photonic transmission in manually prepared microknot resonators with different contact coupling area geometries and refractive index variations. Using selective modifications of the MKR coupling area and index profile, the transmission characteristics were studied, and a recipe for the experimental realization of high quality-factor resonators is prescribed.
We present results of the numerical study of the photonic transmission in 3D resonating microstructures defined on optical tapered fibers as functions of both radius and doping and deduce their sensitivities to localized refractive index variations in terms of resonance shifts. Based on the analysis of the transmission characteristics of polymer-coated microstructures, we demonstrated a linear response to the refractive index gradient in NIR wavelength range.
We envision that simple and robust devices with improved optical and mechanical characteristics will be harbored in next generation sensors, as well as optomechanical applications incorporating microfiber-based resonating structures.
Join Zoom Meeting
https://zoom.us/j/4962025174
The meeting will be recorded and made available on the School’s site.

 

 

Graph Theoretical and Geometrical Investigation of Kinematics and Singularity of 3D Parallel Mechanisms: Michael Slavutin

06 במאי 2020, 14:00 - 15:00 
בניין וולפסון 206  
0
Graph Theoretical and Geometrical Investigation of Kinematics and Singularity of 3D Parallel Mechanisms: Michael Slavutin

~~

SCHOOL OF MECHANICAL ENGINEERING SEMINAR
Monday, March 23, 2020 at 14:00 
Wolfson Building of Mechanical Engineering, Room 206
Graph Theoretical and Geometrical Investigation of Kinematics and Singularity of 3D Parallel Mechanisms

Michael Slavutin
PhD Yoram Reich

This work presents geometrical and graph theoretical methods for analysis of mechanisms in three dimensions. In particular, the singularity analysis by geometric methods of parallel mechanisms is presented. The singularity of the most common three-dimensional mechanism, the 6/6 Stewart platform is fully analyzed. The Aronhold-Kennedy theorem is used for this analysis. This analysis is based on the properties of the reciprocal product of two screws, which depends only on the relative position of the two screws. First, the singularity criterion is developed assuming that there exist two lines that cross four of the six legs of the platform. The instantaneous screw axis and the forces in the legs are found. Next, the above assumption is relaxed and the singularity criterion is developed in a most general configuration. For this purpose, the two degrees-of-freedom mechanism obtained by removal of two legs of the platform is analyzed. The line that is a locus of all possible instantaneous screw axes of such mechanism is found. It is proved that the mechanism is singular if three loci of the instantaneous screw axes of three such sub-mechanisms share a common perpendicular. This criterion is expanded to a general parallel mechanism. Examples of analyzing complex mechanisms with this criterion are shown.
The analysis of singularity of a multi-platform parallel mechanism is performed by building an equivalent simpler mechanism using the reciprocality relation. The two-platform and single- and two-circuit three-platform mechanisms are reduced to a single-platform mechanism. It is shown that the three-circuit three-platform mechanisms are irreducible except for certain cases. This method is shown to be applicable to even more complex mechanisms.
The method used for analysis of the singularity of the multi-platform mechanisms is developed formally into a graph-theoretical duality that is used for kinematic and static investigation of a mechanical system. In this duality, a node of the dual graph that corresponds to a platform of a dual mechanism is placed in a face of a graph of the original mechanism. Edges of the dual graph that correspond to the constraints of the dual mechanism cross the edges of the primal graph and are built so that the dual edge is reciprocal to any primal edge crossed by it. The algorithms for determining the geometry of the dual edges are developed in the first part of this work. Since these graphs are multigraphs, there are various possibilities of building the dual graph. Therefore, the building of dual to a dual graph results in a graph that may be different from the original one. This allows simplification of the original mechanism by successful application of the dual operation, preserving the kinematic and static properties of the original systems.

Removal of acid dyes from concentrated synthetic and real dye effluent using biochar as sustainable adsorbent: Elizaveta Sterenzon

27 באפריל 2020, 14:00 - 15:00 
בניין וולפסון 206  
0
Removal of acid dyes from concentrated synthetic and real dye effluent using biochar as sustainable adsorbent: Elizaveta Sterenzon

~~

SCHOOL OF MECHANICAL ENGINEERING SEMINAR
Monday, April 27, 2020 at 14:00 
Wolfson Building of Mechanical Engineering, Room 206

Removal of acid dyes from concentrated synthetic and real dye effluent using biochar as sustainable adsorbent

Elizaveta Sterenzon
M.Sc. student of Prof. Hadas Mamane

Wastewater from the textile dyeing industry is a growing problem. It is often rich in color and dye residues, toxic compounds, chemicals, high BOD concentration and much harder degradation materials. The extended use of synthetic dyes, rather than the natural ones, makes the treatment of these textile effluents, much more difficult due to their high stability and low biodegradability. Different textile wastewater treatment technologies already exist in the market. However, in many cases, especially with household dyeing units, the textile wastewater is not treated and discharged directly into nearby water sources. There is a growing demand for low-cost, effective and sustainable alternatives for treatment methods, and adsorption occupies a prominent place as a method for dye removal. This study focused on the removal of acid dyes from synthetic and real dye effluent. For the synthetic effluent, Acid Violet 17 solution was prepared, and the real acid dye effluent was taken from dyer houses from Sirumugai, South India. Pine tree biochar was chosen as a low-cost, sustainable and innovative material for the adsorption. Due to its high porosity and large surface area, biochar is gaining a lot of interest in the field of water treatment, as a low-cost contamination adsorbent. Various parameters were tested to investigate the dye removal ability and the best adsorption conditions, as temperature, solution pH and biochar dosage. Kinetic and thermodynamic studies also have been conducted. The results showed an increased dye adsorption at lower pH and at higher temperatures, which indicates an endothermic reaction. According to the kinetic studies, the governing model for the adsorption is the pseudo second order and the Langmuir isotherm fitted significantly better than Freundlich. Regeneration of the biochar was found to be very effective with absolute ethanol. After 5 regeneration cycles the adsorption ability reduced by only 3% from the initial dye removal, and it was almost no biochar mass loss observed. The real textile effluent demonstrated high adsorption affinity to the biochar as well, with almost 100% dye removal after 60 min of treatment.

 

 

Seminar EE - ZOOM = Tuning the Phase and Amplitude Response of Plasmonic Metasurface Etalons

22 באפריל 2020, 14:00 
 

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני, למי שמתחבר לסמינר דרך הזום.

 

 

You are invited to attend a lecture on Wednesday, Apr 22, 2020 14:00

 

Join Zoom Meeting

https://zoom.us/j/255986744

 

 

Tuning the Phase and Amplitude Response of Plasmonic Metasurface Etalons

By:

Danielle Ben Haim

M.Sc. student under the supervision of Prof. Tal Ellenbogen

 

Abstract

 

The research in the field of metasurfaces over the past years has shown their ability to control and manipulate light and thus form unique and novel electro-optical elements. These surfaces consist of arrays of subwavelength particles that exhibit a collective response which is governed by the particles properties, such as their material, shape and size. Understanding the physical behaviour of the particles in the subwavelength regime is what enables to control the overall effective properties of the element.

In this work we study the optical response of plasmonic metasurface etalons in reflection. The etalons consist of a metallic mirror and a plasmonic metasurface separated by wavelength-scale dielectric spacer. We explore the underlying physical mechanisms involved in their electromagnetic response and show that tuning the localized surface plasmon resonance and spacer thickness can be used to achieve both enhanced reflectivity and perfect absorption, in addition to full range phase control, and tunable regions of normal and anomalous dispersion. We characterize the spectral reflection and phase response of metasurface etalons consisting aluminum nanodisks of different radii separated from an aluminum reflector by a SiO2 spacer. We use this approach to demonstrate a simple Hermite-Gaussian (HG) wavelength selective beam-shaping reflective mask and discuss the potential of this concept to be further extended by using multilayers to obtain multi-functional elements.

 

 

 

תשאלו אותנו

לא מצאתם תשובה לשאלות שלכם באתר? למה שלא תשאלו אותנו?

To prevent automated spam submissions leave this field empty.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

EE ZOOM Seminar: Bidirectional One-Shot Unsupervised Domain Mapping

26 באפריל 2020, 14:00 
ZOOM  

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז.  בצ'אט

Join Zoom Meeting
https://zoom.us/j/282415583

Speaker: Tomer Cohen

M.Sc. student under the supervision of Prof. Lior Wolf

 

Sunday, April 26th, 2020 at 14:00

     Zoom

 

Bidirectional One-Shot Unsupervised Domain Mapping

Abstract

We study the problem of mapping between a domain A, in which there is a single training sample and a domain B, for which we have a richer training set. The method we present is able to perform this mapping in both directions. For example, we can transfer all MNIST images to the visual domain captured by a single SVHN image and transform the SVHN image to the domain of the MNIST images. Our method is based on employing one encoder and one decoder for each domain, without utilizing weight sharing. The autoencoder of the single sample domain is trained to match both this sample and the latent space of domain B. Our results demonstrate convincing mapping between domains, where either the source or the target domain are defined by a single sample, far surpassing existing solutions.

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>