סמינר מחלקה של - יובל יבנין - למידה עמוקה ומודלים נומריים לתחזיות גלים

09 בנובמבר 2022, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של - יובל יבנין - למידה עמוקה ומודלים נומריים לתחזיות גלים

 

 

 

School of Mechanical Engineering Seminar

Wednesday, November 9, 2022 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

On deep learning and numerical wave forecasting models

Yuval Yevnin

PhD student of Prof. Yaron Toledo

School of mechanical engineering

Ocean waves have been affecting human life for millennia, from the early days of hunter-gatherer tribes fishing, through the explorations of the Viking age to modern trade and warfare. In most of those years the understanding and prediction ability of the seas and oceans was intuitive at best. This started to change during and after the second world war, as modern operational wave forecasting models were developed. The third generation of these stochastic numerical models are based on the wave action equation, and have been in use since the late 1980’s.

In this talk we discuss both improvements to the currently used operational models, as well as what we see as the next big step in ocean wave forecasting – the use of deep learning models.

First, an addition of a source term accounting for bottom wave reflection to WAVEWATCH III operational forecasting model is presented. This source terms theoretical background and derivation were extended from previous work. Next, it was implemented and was shown to improve the forecast in the near-shore area and in shallow water.

Second, a deep learning model for short-term forecasting of ocean wave height was developed. The model utilizes in-situ buoy measurements and mid-range operational model forecasts as input and predicts the short-term wave height at the buoy location. The model was shown to improve the forecast RMSE by as much as 77% for one hour horizon and by ~12% for up to 12 hours. In Addition, the model was also shown to be transferable to buoys at other locations without further training.

Finally, an advanced deep learning model for improved wind and consequent wave forecasts is presented. The model improves wind velocity magnitude forecast by ~10% and by using the improved wind in an operational wave model, a similar 10% improved wave height is achieved. The model can be localized in space and time, which is shown to produce 35% improvement in forecasting wave height at the Aegean Sea during the months of May to Septembers, when the Etesian wind is dominant.

Join Zoom Meetin https://us02web.zoom.us/j/82108132163?pwd=Z2h4UzNzUS9mbXplT0lMU1pZenFEQT09

סמינר מחלקה של - ענבר בן-דוד - "אופטימיזצית קונפיגורציה של זרוע רובוטית המבצעת משימות בסביבות צפופות מכשולים"

02 בנובמבר 2022, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של ענבר בן-דוד - "אופטימיזצית קונפיגורציה של זרוע רובוטית המבצעת משימות בסביבות צפופות מכשולים"

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, November 2, 2022 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Optimal Configuration of a Robotic Manipulator to Perform

 

Inbar Meir Ben-David

 

Dr. Avishai Sintov, School of Mechanical Engineering

and

Prof. Avital Bechar, Volcani Center

 

Robotic arms are the foundation of modern automation for manufacturing. They accommodate production lines and perform the majority of tasks such as assembly, machining, painting, welding and packaging. However, these highly capable robots are usually degraded to simple repetitive tasks such as pick-and-place or welding along the same course. On the other hand, designing an optimal robot for one specific task consumes large resources of engineering time and costs. Moreover, common methods search for collision free paths for robotic arms. However, these are unlikely to be found in cluttered environments where objects must be cleared in order to reach the goal. Furthermore, robotic manipulators are usually designed for interaction with the environment solely using their end-effector.

This work seeks for the near-optimal robot configuration to perform a specified task based on human demonstration. The proposed method searches for the robot design variables and the robot placement in the world. An optimal robot is the one that incorporates the minimal DOF and provides best accuracy during task execution. In addition, the optimal design is given with a required path to complete the task. The path is composed using a meta-heuristic method in order to find the joint values to perform the task. This approach takes into consideration the entire robot arm (joint and links), to perform tasks in cluttered environments or to avoid obstacles. The proposed method can also be used to plan a robot path along a human demonstration for existing robots. We provide a comparative analysis to identify the most suitable algorithm to solve this optimization problem. Different known methods, such as Artificial Bee Colony, Genetic Algorithm and Simulated Annealing, are tested and compared. Furthermore and to overcome the highly non-linear and non-continuous search space of the problem, a new algorithm is proposed termed Robot Arm - Particle Swarm Optimization (RA-PSO).

Moreover, we define a new evaluation index Normalized Computation Effort Index (NCEI) that combine the convergence iteration and valid particles.

The new method can find the same robot design of the standard method with lower NCEI.

To test and establish our method, we use three diffident test cases. The first is a classic pick and place of an object from a conveyor while avoiding an obstacle. The second scenario is of a robot performing a welding task and requires to track position and orientation of the human demonstrator. The last scenario is a robot moving inside a palm tree canopy in order to perform the dilution task. The palm tree canopy represents a cluttered environment that a collision free path will not be found by the classic path planing methods. In brief, the results show improvement in the NCEI of 90\ ,69%, 53% and 44% in average for all scenarios for n = 3,4,5,6, respectively.

 

Join Zoom Meetin https://us02web.zoom.us/j/82108132163?pwd=Z2h4UzNzUS9mbXplT0lMU1pZenFEQT09

Verification Engineering Intern for Camera group

Minimum Qualifications:
BSc student in Electrical Engineering or Computer Science from leading universities in Israel
GPA 85 or better
5 to 3 semesters left

 

Nice to have Qualifications:
Major (or additional courses) in computer engineering
Programming experience
Knowledge in OOP
Verilog/System Verilog
 

DSP Student Position for 5G Developmentv

Basic Qualifications:
- Theoretical understanding of digital communications / signal processing
- High software development capabilities
- Creativity and independent problems solving ability
- Excellent communication skills
- Fluent English
- Readiness to contribute significant efforts
- Any relevant work experience – advantage
- Good MATLAB programming skills – advantage

 

ד"ר מיטל אליס גבע

ד"ר מיטל אליס גבע

 

מפגש ייעוץ לתואר ראשון בהנדסה

05 בספטמבר 2022, 16:00 
ZOOM  
מפגש ייעוץ לתואר ראשון בהנדסה

רוצה להצטרף לאלפי בוגרות ובוגרים שנמצאים בתפקידי מפתח בעולמות ההיי-טק, ההנדסה והיזמות?

 

כדי לפתור בעיות ממשיות בעולם צריך ללמוד הנדסה אחרת, כזו שקשובה לרוח הזמן ולאנשים. הפקולטה להנדסה באוניברסיטת תל אביב מזמינה אותך למפגש ייעוץ בזום לתואר ראשון (.B.Sc) בהנדסה ולהכיר את מגוון התוכניות שיכינו אותך לעולם שלא מפסיק להשתנות.

 

מגוון התוכניות לתואר ראשון:

  • תואר ראשון (.B.Sc) בהנדסת חשמל

  • תואר ראשון (.B.Sc) בהנדסה מכנית

  • תואר ראשון (.B.Sc) בהנדסת תעשייה וניהול

  • תואר ראשון (.B.Sc) בהנדסה ביו-רפואית

  • תואר ראשון (.B.Sc) במדע והנדסה של חומרים

  • תואר ראשון (.B.Sc) במדעים דיגיטליים להיי-טק

 

במפגש תהיה לך ההזדמנות להכיר מקרוב את מגוון התוכניות, לשאול שאלות, להכיר את הסגל שלנו ולפגוש סטודנטים וסטודנטיות.

 

המפגש יתקיים ביום שני | 5.9 | שעה 16:00 | ZOOM . כניסה למפגש 

 

סמינר מחלקה - לירון סיימון - הרחבת ההבנה של בעיית החלקיקים המוצקים יישוב דרך ממשק צפיפות באמצעות ML

30 בנובמבר 2022, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה - לירון סיימון - הרחבת ההבנה של בעיית החלקיקים המוצקים יישוב דרך ממשק צפיפות באמצעות ML

 

 

 

School of Mechanical Engineering Seminar
Wednesday, November 30, 2022 at 15:00
Wolfson Building of Mechanical Engineering, Room 206

Extending understanding of the problem of solid particles
settling through a density interface using ML

By Liron Simon Keren

M.Sc. student of Prof. Alex Liberzon

Turbulence Structure Laboratory

 

Settling due to gravitational force or flotation due to buoyancy are basic transport mechanisms of solid bodies in fluids on Earth, such as in marine snow sedimentation, CO2 capture in stratified lakes, and flotation processes in industrial applications. In nature and industry, fluids are often in-homogeneous, where dissolved substances and temperature differences act as density-stratifying agents. Objects crossing these regions of strong density gradients have been observed to experience an increased resistance compared to non-stratified fluid layers.

Experimental studies attempting to measure the additional resistance force on small settling particles across density interfaces are very challenging and require refractive index matching, careful optical setups and three-dimensional Lagrangian tracking with high spatial resolution. Thus, they result in a small number of trajectories and a limited set of parameters.

This study presents a different approach – we simplify experiments and measure the outcome of the physical process - the retention time, which is the extended time a particle takes to cross and reach the terminal velocity in the bottom, denser fluid layer. This approach allows us to significantly extend the parameter space into previously unexplored ranges and provides sufficient data for Machine Learning methods. Furthermore, we developed a new ML system for symbolic regression, explicitly designed for physics-informed problems. Using this ML system, we produce two predictive correlations of retention time for an extensive range of particle and fluid parameters: a) in the form of a trained ML, and b) in the form of a symbolic equation.

Retention time correlations in an extended parameter range can help estimate the effect of increased residence times on CO2 capture or microplastic settling and improve the effectiveness of industrial processes with stratified fluids for better sustainability.

 

 

 

Join Zoom Meeting

https://tau-ac-il.zoom.us/j/4962025174?pwd=bVJUeElXRUUya3BERisyNllLOE9EZz09

 

 

 

 

 

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>