School of Mechanical Engineering Illya Barmak

20 ביוני 2018, 14:00 - 15:00 
בניין תכנה 106  
0
School of Mechanical Engineering Illya Barmak

School of Mechanical Engineering Seminar
Wednesday, June 20, 2018 at 14:00
Tokhna Building of Mechanical Engineering, Room 106

 

 

Stability of Stratified Two-Phase Flows in Inclined Channels

 

Ilya Barmak

 PhD student of Prof. Neima Brauner and Prof. Amos Ullmann

 

Stratified two-phase channel flow can be achieved only for certain operating conditions, for which the flow is stable and no undesired effects are encountered. The knowledge of these conditions is essential for the design and operation of pipelines and other process equipment. The main goal of this research is to acquire this knowledge by means of linear modal and non-modal stability analyses in a form that can provide insights that are useful from the practical point of view.

Modal analysis is a traditional approach that examines the linear stability with respect to an arbitrary wavenumber perturbation by solving numerically the system of Orr-Sommerfeld equations defined in each sublayer. The results are summarized in the form of stability maps showing the operational conditions at which a stratified-smooth flow pattern is stable. In inclined flows, up to three distinct base states with different holdups exist, so that the stability analysis has to be carried out for each branch separately. Although the conducted modal stability analysis considered only 2D perturbations, we proved the sufficiency of 2D analysis for exploring the stability of stratified horizontal and inclined two-phase channel flows also with respect to 3D perturbations (i.e., Squire theorem) .

The modal analysis, however,  predicts instability only in the limit of infinite time. The non-modal (temporal) perturbations approach has been proven to be more relevant for relatively short times. Using this approach, we are looking for the so-called “optimal perturbations” that exhibit the maximum gain for transfer of energy from the mean flow to the perturbations. We found that the optimal perturbations may lead to the onset of shear instability and further non-linear transition on the route to turbulence in one of the phases, and/or to the growth of the interface displacement and thereby to flow pattern transition within the region that is predicted to be linearly stable by the modal analysis.

סמינר מחלקתי אלקטרוניקה פיזיקאלית -Sahar Froim

14 ביוני 2018, 15:00 
פקולטה להנדסה, ביניין כיתות, חדר 011  
סמינר מחלקתי אלקטרוניקה פיזיקאלית -Sahar Froim

Particle Trapping and Conveying Using an Optical Archimedes’ Screw

:By

Sahar Froim

MSc student under the supervision of Dr. Alon Bahabad

 

Abstract

 

Trapping and manipulation of particles using laser beams has become an important tool in diverse fields of research.

In recent years, particular interest has been devoted to the problem of conveying optically trapped particles over extended distances either downstream or upstream of the direction of photon momentum flow. In this work, we proposed and experimentally demonstrated an optical analog of the famous Archimedes’ screw where the rotation of a helical intensity beam is transferred to the axial motion of optically trapped micrometer-scale, airborne, carbon-based particles. With this optical screw, particles were easily conveyed with controlled velocity and direction, upstream or downstream of the optical flow, over a distance of half a centimeter. Our results offer a very simple optical conveyor that could be adapted to a wide range of optical trapping scenarios.

 

 

On Thursday, June 14, 2018, 15:00

Room 011, Kitot building

לשירותי תחבורה מתקדמים ביותר

12 יוני 2018
לשירותי תחבורה מתקדמים ביותר

התפתחויות טכנולוגיות בתחום הרכב כגון נהיגה אוטונומית ויישום שיטות הנעה אלטרנטיביות נקיות, מובילות למהפכה בתחום התחבורה. מגמה זאת מתווספת להתפתחויות משמעותיות מהשנים האחרונות בתחום הנתונים. מקורות מידע חדשניים כגון מערכות כרטוס חכמות, אפליקציות סלולריות, מערכות ספירת נוסעים אוטומטיות ומערכות מיקום אוטומטיות מספקים מידע רב ועשיר. כל אלה פותחים צוהר לפיתוח ויישום שירותי תחבורה מתקדמים המותאמים באופן מיטבי לצרכי הנוסעים ולמטרות ספקי השירות. ליישום שירותים אלה השלכות כלכליות וסביבתיות רבות, כדוגמת הפחתה בבעלות רכב פרטי, הפחתה בעומסי תנועה, הפחתת זיהום אוויר וכו'.

 

המעבדה לאנליטיקה של מערכות תחבורה עירוניות

המעבדה לאנליטיקה של מערכות תחבורה עירוניות (AUTO Lab) הינה מעבדה חדשה המוקמת בימים אלה במחלקה להנדסת תעשייה באוניברסיטת תל-אביב, בראשה עומד ד"ר מור כספי. המחקר במעבדה מתמקד בפיתוח מודלים ושיטות חקר ביצועים עבור תכנון ותפעול מערכות תחבורה מתקדמות. אופי המחקר הינו יישומי ברובו, אחת ממטרותיו העיקריות הינה פיתוח כלים תומכי החלטה שישפרו את תהליכי קבלת ההחלטות בשלבי התכנון השונים. כלומר, תכנון אסטרטגי (לדוגמה מבנה הרשת), תכנון טקטי (לדוגמה מאפייני הצי) ותכנון אופרטיבי (לדוגמה לוח הזמנים).

המחקרים במעבדה יעשו בשיתוף פעולה עם מערכות תחבורה קיימות, בהתבסס על מידע אמיתי המתקבל ממערכות אלה ומתוך מטרה לבחון וליישם בשטח את תוצרי המחקר. דוגמאות ליישומיי תחבורה בהם יתמקד המחקר במעבדה כוללים מערכות הסעה המונית, שירותי הסעה גמישים למחצה, מערכות שיתוף כלי רכב, מערכות שיתוף נסיעות ושירותי הסעה לפי דרישה (on-demand Transportation).  

 

גיוס סטודנטים

המעבדה מגייסת סטודנטים לתארים מתקדמים (מאסטר ודוקטורט) וכן משתלמי בתר-דוקטורט. למידע נוסף:  morkaspi@post.tau.ac.il  

ביום רביעי 27.06.18 הפקולטה להנדסה של אוניברסיטת תל-אביב משיקה את המיזם הראשון מסוגו באקדמיה אשר משלב תחת קורת גג אחת מחקר ולימודים, חינוך ותמיכה בתעשייה בכל התחומים הקשורים להנדסת מערכות. המיזם, בראשו עומד פרופ' יורם רייך, הוקם ע"י אנשי מקצוע בעלי ניסיון תעשייתי ומחקרי, עם רצון לקדם ולפתח את התחום במטרה לתת פתרונות לדרישות משתנות וגוברות של התעשייה, המגזר הציבורי, והאקדמיה.

 

 

 

EE Seminar: Generative Low-Shot Network Expansion

17 ביוני 2018, 15:30 
חדר 206, בניין וולפסון הנדסת מכונות  

 

Speaker: Adi Hayat

M.Sc. student under the supervision of Prof. Daniel Cohen-Or

 

Sunday, June 17th, 2018 at 15:30

Room 206, Wolfson Mechanical Bldg., Faculty of Engineering

 

Generative Low-Shot Network Expansion​

 

Conventional deep learning classifiers are static in the sense that they are trained on a predefined set of classes and learning to classify a novel class typically requires re-training. In our work, we address the problem of Low-Shot network-expansion learning. We introduce a learning framework which enables expanding a pre-trained (base) deep network to classify novel classes when the number of examples for the novel classes is particularly small. We present a simple yet powerful distillation method where the base network is augmented with additional weights to classify the novel classes, while keeping the weights of the base network unchanged. We term this learning hard distillation, since we preserve the response of the network  on the old classes to be equal in both the base and the expanded network. We show that since only a small number of weights needs to be trained, the hard distillation excels for low-shot training scenarios. Furthermore, hard distillation avoids detriment to classification performance on the base classes. Finally, we show that low-shot network expansion can be done with a very small memory footprint by using a compact generative model of the base classes training data with only a negligible degradation relative to learning with the full training set.

EE Seminar: Structured GANs

17 ביוני 2018, 15:00 
חדר 206, בניין וולפסון הנדסת מכונות  

 

Speaker: Irad Peleg

M.Sc. student under the supervision of Prof. Lior Wolf

 

Sunday, June 17th, 2018 at 15:00

Room 206, Wolfson Mechanical Bldg., Faculty of Engineering

 

Structured GANs

 

We present Generative Adversarial Networks (GANs), in which the symmetric property of the generated images is controlled. This is obtained through the generator network’s architecture, while the training procedure and the loss remain the same. The symmetric GANs are applied to face image synthesis in order to generate novel faces with a varying amount of symmetry. We also present an unsupervised face rotation capability, which is based on the novel notion of one-shot fine tuning.

EE Seminar: Networks of ribosome flow models for modeling and analyzing intracellular traffic

13 ביוני 2018, 15:30 
חדר 011, בניין כיתות-חשמל  

 

Speaker: Itzik Nanikashvili

M.Sc. student under the supervision of Prof. Michael Margaliot

 

Wednesday, June 13th 2018 at 15:30

Room 011, Kitot Bldg., Faculty of Engineering

 

Networks of ribosome flow models for modeling and analyzing intracellular traffic

 

Abstract

 

The ribosome flow model with input and output (RFMIO) is a deterministic dynamical system that has been used to study the flow of ribosomes during mRNA translation. The input of the RFMIO controls its initiation rate and the output represents the ribosome exit rate (and thus the protein production rate) at the 3' end of the mRNA molecule. The RFMIO and its variants can be used for studying additional intracellular processes such as transcription, transport, and more.

Here we consider networks of interconnected RFMIOs as a fundamental tool for modeling, analyzing and re-engineering the complex mechanisms of protein production. In these networks, the output of each RFMIO may be divided between several inputs of other RFMIOs. For the specific case of feed-forward network of RFMIOs we prove three important properties. First, the entire network converges to a steady-state that depends on all the translation rates in all the RFMIOs, but not on the initial conditions in the network. Second, there exists a spectral expression for the steady-state, and thus it can be determined without any numerical simulations of the dynamics. Third, the problem of dividing the output of an RFMIO between the inputs of other RFMIOs in a way that maximizes the total steady-state production rate of the network is a convex optimization problem. Hence, this problem is tractable even for very large networks. We describe the implications of these results to several fundamental biological phenomena and biotechnological objectives.

EE Seminar: Over-Parameterized Models for Vector Fields with Application to Phase-Contrast MRI Data

13 ביוני 2018, 15:00 
חדר 011, בניין כיתות-חשמל  

Speaker: Keren Rotker

M.Sc. student under the supervision of Prof. Alex Bronstein and Prof. Dafna Ben-Bashat

 

Wednesday, June 13th, 2018 at 15:00

Room 011, Kitot Bldg., Faculty of Engineering

 

 

Over-Parameterized Models for Vector Fields with Application to Phase-Contrast MRI Data

 

Abstract

 

Vector fields arise in a variety of quantity measure and visualization techniques such as fluid flow imaging, motion estimation, deformation measures and color imaging, leading to a better understanding of physical phenomena. Recent progress in vector field imaging technologies has emphasized the need for efficient noise removal and reconstruction algorithms. A key ingredient in the success of extracting signals from noisy measurements is prior information. This prior knowledge can often be represented as a parameterized model. In this work, we extend the over-parameterization variational framework in order to perform model-based noise removal of vector fields. The over-parameterization methodology combines local modeling of the data with global model parameter regularization. By considering the vector field as a linear combination of basis vector fields and appropriate scale and rotation coefficients, the denoising problem reduces to a simpler form of coefficient recovery. We introduce two versions of the over-parameterization framework: total variation-based method and sparsity-based method, relying on the cosparse analysis model. We first demonstrate the efficiency of the proposed frameworks for two-

and three-dimensional vector fields with linear over-parameterization models. We then consider color images as vector fields and illustrate denoising via the new techniques. Finally, we address the problem of denoising magnetic resonance imaging (MRI) vector field data. Advances in medical imaging technologies have led to new modalities such as flow-sensitive magnetic resonance imaging (phase-contrast MRI) which allows the acquisition of blood flow velocities with a volumetric coverage in a time-resolved fashion. We adjust our model to suit several blood flow patterns and demonstrate the algorithm’s efficiency on two- and three-dimensional simulations.

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>