Michael Zuckerman-Visual system inspire algorithm for breast cancer risk assistant in terminal image

סמינר מחלקת מערכות - EE Systems Seminar

04 בפברואר 2024, 15:00 
Electrical Engineering-Kitot Building 011 Hall  
Michael Zuckerman-Visual system inspire algorithm for breast cancer risk assistant in terminal image

Electrical Engineering Systems Seminar

 

Speaker: Michael Zuckerman

M.Sc. student under the supervision of Dr. Hedva Spitzer

 

Sunday, 4th February 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

Visual system inspire algorithm for breast cancer risk assistant in terminal image

 

Abstract

In the last decade, breast cancer has become one of the leading cancer types worldwide. Every year, it causes the deaths of 685,000 individuals in the world. Early detection is crucial for increasing the chances of survival, and thermography is one tool physicians use to evaluate the risk of the disease. It is a noninvasive tool for measuring temperature distribution over the skin using infrared (IR) wavelets. 

Many previous studies tried to enhance thermal image through manly via denoising and histogram equalization. In recent years, several studies have attempted to improve the evaluation methods for distinguishing between sick and healthy patients.  

Our study aimed to improve the image appearance of the area in the image, such as areolar regions, nipples, and blood vessels (BV) that might give an indicator for breast cancer.

We propose a new algorithm that aims to enhance the above diagnostic areas through a unique algorithm for enhancing the structure of the image by lateral facilitation visual system mechanism and preprocess of companding HDR image based on Adaptive Contrast Companding (ACC) and a component that computes the region of interest (ROI) of the breast.   

The algorithm showed a 16% increase in the contrast of the blood vessel and areolar. It has been demonstrated on images from the DMA database through contrast-to-noise ratio (CNR) in comparison to the original BIR image.

We employed the deep learning evaluation method ResNet50 to validate our algorithm's effectiveness. This evaluation categorizes images into "sick" and "healthy" classes. The algorithm succeeded in obtaining better scores for the “sick” and the “healthy” cases (97%) in comparison to the ability to distinguish the diagnostic in the original image (86%). Our proposal algorithm yielded better accuracy and precision than the previous studies, at least for those that relied only on frontal direction breast examination.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

Yonatan Shafir-PriorMDM: Human Motion Diffusion as a Generative Prior

סמינר מחלקת מערכות - EE Systems Seminar

07 בפברואר 2024, 15:00 
Electrical Engineering-Kitot Building 011 Hall  
Yonatan Shafir-PriorMDM: Human Motion Diffusion as a Generative Prior

Electrical Engineering Systems Seminar

 

Speaker: Yonatan Shafir

M.Sc. student under the supervision of Prof. Amit H. Bermano

 

Wednesday, 7th February 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

PriorMDM: Human Motion Diffusion as a Generative Prior

 

Abstract

Recent work has demonstrated the significant potential of denoising diffusion models for generating human motion, including text-to-motion capabilities. However, these methods are restricted by the paucity of annotated motion data, a focus on single-person motions, and a lack of detailed control. In this paper, we introduce three forms of composition based on diffusion priors: sequential, parallel, and model composition. Using sequential composition, we tackle the challenge of long sequence generation. We introduce DoubleTake, an inference-time method with which we generate long animations consisting of sequences of prompted intervals and their transitions, using a prior trained only for short clips. Using parallel composition, we show promising steps toward two-person generation. Beginning with two fixed priors as well as a few two-person training examples, we learn a slim communication block, ComMDM, to coordinate interaction between the two resulting motions. Lastly, using model composition, we first train individual priors to complete motions that realize a prescribed motion for a given joint. We then introduce DiffusionBlending, an interpolation mechanism to effectively blend several such models to enable flexible and efficient fine-grained joint and trajectory-level control and editing. We evaluate the composition methods using an off-the-shelf motion diffusion model, and further compare the results to dedicated models trained for these specific tasks. https://priormdm.github.io/priorMDM-page/ 1

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

Alon Rashelbach-Trading Memory Accesses for Computations in Packet Processing (and Beyond)

סמינר מחלקת מערכות - EE Systems Seminar

05 בפברואר 2024, 15:00 
Electrical Engineering-Kitot Building 011 Hall  
Alon Rashelbach-Trading Memory Accesses for Computations in Packet Processing (and Beyond)

 

(The talk will be given in English)

Speaker:     Alon Rashelbach

Electrical Engineering Faculty, Technion

011 hall, Electrical Engineering-Kitot Building

Monday, February 5th, 2024

15:00 - 16:00

 

Trading Memory Accesses for Computations in Packet Processing (and Beyond)

 

Abstract

Range matching, the process of identifying a range that contains a given input number, is vital in various computer systems, like networking, security, and storage. However, the current methods for range matching hit a wall when it comes to handling a larger number of supported ranges without slowing down search performance. They heavily rely on pointer-chasing algorithms, causing issues when their data structures outgrow the CPU core cache. This reliance on data-dependent memory accesses also constrains efficient memory prefetching and limits potential hardware implementations.

We introduce a novel data structure called the Range Query Recursive Model Index (RQRMI) to tackle the complexities associated with range matching (SIGCOMM’20). RQRMI utilizes shallow neural networks that learn the mapping between inputs and the position of the matching range in memory. This transformation turns the memory-intensive lookup processes into swift neural network inferences, essentially trading costly memory accesses for cheap computations. Remarkably, RQRMI achieves an impressive range compression ratio, up to 90X compared to current methods, enabling direct lookup operations while staying within the CPU core cache limits. The RQRMI training algorithm guarantees a strict upper bound on lookup delay, assures result accuracy, and showcases rapid convergence rates when implemented on CPUs.

We present an algorithm for multi-field packet classification that leverages RQRMI models, and integrate it into the critical path of Open vSwitch, a broadly used open-source virtual switch (NSDI’22). The integration of RQRMI yields impressive scalability, empowering Open vSwitch to manage 500 times more routing rules and experiencing a throughput boost of up to 160 times. When implemented in hardware, RQRMI resolves scalability issues seen in current longest-prefix-matching methods (MICRO’23). This allows scaling the number of routing rules and their bit length to meet forthcoming network demands. Its efficient memory usage and low bandwidth needs make it suitable for genomic processing hardware (BCB’23), and address translators in SSD storage drives (work in progress).

 

Alon Rashelbach, is a 5th year PhD student at Technion, supervised by Mark Silberstein and Ori Rottenstreic

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

Photoluminance learning- lab student

 

למחקר העוסק בכיול ושערוך מידע מתוך אותות photo-luminance דרוש סטודנט\ית לביצוע עבודת לביצוע עבודת חקר לתזה.

יום האישה והנערה במדע- סיור בחברת נובה

11 בפברואר 2024, 10:00 - 14:00 
משרדי חברת נובה  
סיור בנובה

מהרו להירשם!

סטודנטיות לתארים מתקדמים בפקולטה להנדסה ובבה"ס לפיזיקה-

האירוע הזה הוא לגמרי בשבילכן

חברת נובה מזמינה אתכן סטודנטיות לתארים מתקדמים בהנדסה ובפיזיקה לסיור ייחודי לרגל יום האישה והנערה במדע.

במהלך הסיור תזכו לשמוע מפיזיקאיות ומהנדסות בנובה על תהליך הקבלה והעסקה בחברה.

בין היתר ייערכו סיורים במעבדות השונות והרצאות מגוונות בשלל נושאים רלוונטים. 

 

מתי? ביום ראשון ה-11.02.24

שעה? 10.00-14.00

איפה? משרדי חברת נובה ברח' דוד פייקס 5, פארק המדע רחובות ( כ-10 דק הליכה מתחנת רכבת רחובות. 

*האירוע יתקיים בהתאם להנחיות פיקוד העורף קיים מרחב מוגן מותאם בחברה. 

**בנושא הנגשה ניתן לפנות לAdi-s@novami.com

 

מהרו להירשם- מספר המקומות מוגבל 

 

 

Dr. Itai Epstein - The Future of Far-IR and THz Optoelectronics

סמינר המחלקה לאלקטרוניקה פיזיקלית

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

 

08 בפברואר 2024, 11:00 
011,Kitot Building  
Dr. Itai Epstein - The Future of Far-IR and THz Optoelectronics

 

Prize awarded by JNF Canada and KKL-JNF Jewish National Fund rewards work on sustainable building materials, green ammonia, and a replacement for lithium batteries

 

סטודנט לחומרים/ מכונות

הזדמנות להצטרף לאינטל קריית גת!

 סטודנטיות וסטודנטים יקרים.ות,

Prof. Yossi Rosenwaks- CMOS Compatible Electrostatically Formed Silicon Nanowire as an Ultrasensitive and Selective Gas Sensing Platform

סמינר המחלקה לאלקטרוניקה פיזיקלית

01 בפברואר 2024, 11:00 
Electrical Engineering-Kitot Building 011 Hall  
Prof. Yossi Rosenwaks- CMOS Compatible Electrostatically Formed Silicon Nanowire as an Ultrasensitive and Selective Gas Sensing Platform

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>