סמינר מחלקתי של אסף דנה- הרכבה ופירוק של מוצקים באמצעות פעולה קולקטיבית

04 באוגוסט 2025, 14:00 - 15:00 
 
סמינר מחלקתי של אסף דנה- הרכבה ופירוק של מוצקים באמצעות פעולה קולקטיבית

Assembling and Disassembling Solids using Collective Action

Monday August 4th 2025 at 14:00 

Wolfson Building of Mechanical Engineering, Room 206

Abstract:

Swarm robotics is a promising methodology for accomplishing complicated tasks through the collective behavior of multiple active units. Interactions between active individuals in animal collectives (like fire ants and worms) lead to emergent responses that remain elusive in synthetic systems. In this talk, I present shape-morphing polymers as a framework to create bio-inspired transient swarms that can self-assemble into a stable solid structure, modulate their mechanical properties, and disassemble on demand. The solids are composed of aggregates of many magnetic, heat-responsive liquid crystal elastomer ribbons. Dilute-suspensions of curved and moving ribbons mechanically interlock, inducing reversible aggregation. The degree of bend and twist of the ribbon and the motion of the ribbon in a rotating external field control how ribbons interact with one another. A mathematical model is developed that sheds light on the role of topological mechanisms in aggregation. The ribbon suspensions reversibly transition between fluid- and solid-like states, exhibiting up to 6 orders-of-magnitude increase in the storage moduli of the entangled aggregates compared with the liquid dispersions. Subsequent heating resulted in a 2-fold increase in both stiffness and yield stress. Controlled dissociation is induced by imparting kinetic energy to the individual ribbons at high magnetic field rotation speeds. Study results provide insights that can lead to advancements in control and task programming of such swarming systems, specifically, by designing mechanical and chemo-mechanical switches for system manipulation. Imparting dynamic collective behaviors into synthetic systems may enable a range of potential applications from autonomous bio-inspired soft robotics to injectable biomaterials.

 

Bio:

Dr. Asaf Dana is an incoming assistant professor in the Department of Mechanical and Materials Engineering at the University of Nebraska – Lincoln. Until recently, he was a postdoctoral researcher in the Departments of Biomedical Engineering and Materials Science and Engineering at Texas A&M University. His current research focuses on developing soft stimuli-responsive material platforms for applications in tissue engineering, soft robotics and materials processing. Dr. Dana received his Ph.D. (2022) from the Department of Mechanical Engineering at the Technion – Israel Institute of Technology, focusing on the design of a previously unaccessed high-rate actuation mode of shape memory alloys. His research interests include the mechanics of responsive materials with emphasis on processes involving phase transitions in fabrication and actuation. In his research, he develops new experimental systems and methods to study the fundamental relations between microstructural evolution and macro-scale response and employs this knowledge for the development of new engineering design tools for smart and responsive systems.

 

 

 

 

 

 

 

 

יום פרויקטים בית הספר להנדסת תעשייה ומערכות נבונות

24 ביוני 2025, 10:30 - 15:30 
 

10:30-11:50- מושב ראשון

בניין תוכנה: חדרים 101,102,103,104,106

12:00-12:50- הפסקה

12:50-14:10- מושב שני

בניין תוכנה: חדרים 101,102,103,104,106

14:15-15:15- תערוכת פוסטרים, לובי בניין תוכנה (ליד אולם רוזנבלט)

15:15-15:30- דברי סיכום וחלוקת פרסים -ראש בית הספר להנדסת תעשייה ומערכות נבונות, פרופ’ ערן טוך, אולם רוזנבלט 

15:30-20:30- יום פקולטה -ברודקום 

 

מחזור תשפ"ו - יצא לדרך!

בית הספר להנדסת חשמל ומחשבים קיים השבוע מפגש מגבש למתקבלים ומתקבלות של מחזור תשפ"ו. 

הסטודנטים.ות העתידיים.יות נהנו מקבלת פנים מרעננת, שכללה כיבוד מפנק ותצוגה מרשימה במיוחד של שלושה פרויקטי גמר של סטודנטים.ות מבית הספר להנדסת חשמל ומחשבים. 

(שמחה ליבוביץ ,ארקדי רפלוביץ ,רועי רייך   - מחלקת פרויקטים הנדסת חשמל ומחשבים)

 

בכנס הוצגו 3 פרויקטים של סטודנטים הנמצאים בשנת הלימודים האחרונה שלהם ללימודי הנדסת חשמל.

 

הסטודנטיות מיקה סלע ועומר חלד הציגו את הפרויקט "רובוט למיפוי מנהרות".

 

הסטודנטיות קורל לוין ועדי שמיר הציגו את הפרויקט "ברווז אמבטיה שעוזר לקודד" והסטודנטים לירן לוי וירדו פרדו הציגו את הפרויקט "מאיץ AI למצלמות חכמות"

 

 

כמו כן, נהנו ממגוון הרצאות ומפגשים עם אנשי הסגל האקדמי של בית הספר והתעשייה. 

 

בהצלחה לכל הסטודנטים.ות החדשים.ות!

 

לינק לתמונות מהמפגש

 

 

 מתקבלי ומתקבלות תואר ראשון  בבית הספר להנדסה מכנית לשנה"ל תשפ"ו

האירוע הראשון שלכם.ן כבר כאן! 

 מוזמנים.ות לכנס "בירה ופלאפל", הזדמנות נהדרת להכיר את חברי וחברות הסגל, המרצים.ות והסטודנטים.יות שילוו אתכם.ן לאורך ארבע השנים הקרובות.

 מתי:  יום שלישי, 17.7.25
 שעות:  15:00-12:00
 איפה: אולם 001, קומה מינוס 1, בניין ברודקום/סמואלי, קמפוס האוניברסיטה

 מחכים לכם.ן עם חיוך, מצב רוח טוב, וכמו שהבנתם.ן מהשם, פלאפל ובירה :)

 מצפים.ות לראותכם.ן,

חברי וחברות הסגל, הסטודנטים.יות והמרצים.ות

 

EE ZOOM Seminar: PractiLight: Practical Light Control Using Foundational Diffusion Models

22 ביוני 2025, 16:00 
סמינר זום  
EE ZOOM Seminar: PractiLight: Practical Light Control Using Foundational Diffusion Models

https://tau-ac-il.zoom.us/j/83662553844

 Electrical Engineering Systems ZOOM Seminar

 

Speaker: Yotam Erel

Ph.D. student under the supervision of Prof. Amit H. Bermano

 

Sunday, 22nd June 2025, at 16:00

 

PractiLight: Practical Light Control Using Foundational Diffusion Models

Abstract

Light control in generated images is a difficult task, posing specific challenges, spanning over the entire image and frequency spectrum. Most approaches tackle this problem by training on extensive yet domain-specific datasets, limiting the inherent generalization and applicability of the foundational backbones used. Instead, PractiLight is a practical approach, effectively leveraging foundational understanding of recent generative models for the task. Our key insight is that lighting relationships in an image are similar in nature to token interaction in self-attention layers, and hence are best represented there. Based on this and other analyses regarding the importance of early diffusion iterations, PractiLight trains a lightweight LoRA regressor to produce the direct light map for a given image, using a small set of training images. We then employ this regressor to incorporate the desired lighting into the generation process of another image using Classifier Guidance. This careful design generalizes well to diverse conditions and image domains. We demonstrate state-of-the-art performance in terms of quality and control with proven parameter and data efficiency compared to leading works over a wide variety of scene types. We hope this work affirms that image lighting can feasibly be controlled by tapping into foundational knowledge, enabling practical and general relighting.

 

 

EE Seminar: IRS for multi-user communication: investigating metrics and phase errors

09 ביוני 2025, 15:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: IRS for multi-user communication: investigating metrics and phase errors

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל (יש להיכנס לפני כן למודל,  לא באמצעות האפליקציה)- הרישום מסתיים ב- 15:10

Registration to the seminar will be done by scanning the barcode for the Moodle (Please enter ahead to the Moodle, NOT by application)- Registration ends at 15:10

 

Electrical Engineering Systems Seminar

 

Speaker: Eitan Ovrutski 

M.Sc. student under the supervision of Prof. Ofer Amrani

 

Monday, 9th June 2025, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

IRS for multi-user communication: investigating metrics and phase errors

Abstract

This thesis explores the use of a discretely phased Intelligent Reflecting Surface (IRS) in a multi-user SISO system under a deterministic channel model. We develop a linear-time algorithm for optimizing discrete phase configurations, which consistently outperforms quantized Adam Gradient Descent across various metrics, including network capacity.

We further examine how IRS can regulate Signal-to-Noise Ratio (SNR) distribution in space to simplify MAC layer design and reduce the need for multiple Modulation and Coding Schemes (MCS). Conventional capacity-maximizing strategies are shown to be suboptimal for this purpose. Alternative metrics are proposed and evaluated in both LOS and NLOS scenarios. Monte Carlo simulations show up to 8.5 dB and 15 dB reduction in SNR variability in LOS and NLOS environments, respectively, with minimal loss in mean SNR.

For the mean SNR metric, we present a novel globally optimal solution using recursive equations in a continuous-phase setting.

Lastly, we investigate the effects of phase quantization and Channel State Information (CSI) estimation errors. We show how, under parametric estimation, the IRS gain becomes non-quadratic beyond a certain error threshold and derive performance bounds. Simulations reveal that in realistic settings with estimation errors, adding IRS elements may degrade performance—contrary to ideal assumptions.

 

 

 

 

EE Seminar: The Price of Adaptivity in Stochastic Convex Optimization

09 ביוני 2025, 13:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: The Price of Adaptivity in Stochastic Convex Optimization

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל (יש להיכנס לפני כן למודל,  לא באמצעות האפליקציה) - )- הרישום מסתיים ב- 13:10

Registration to the seminar will be done by scanning the barcode for the Moodle (Please enter ahead to the Moodle, NOT by application)- Registration ends at 13:10

 

(The talk will be given in English)

 

Speaker:     Dr. Yair Carmon

                        Blavatnik School of Computer Science and AI, Tel Aviv University

 

011 hall, Electrical Engineering-Kitot Building‏

Monday, June 9th, 2025

13:00 - 14:00

 

The Price of Adaptivity in Stochastic Convex Optimization

 

Abstract

While stochastic optimization methods drive continual improvements in machine learning, choosing the optimization parameters—particularly the learning rate (LR)—remains challenging. In this talk, I will present our work on designing tuning-free algorithms, and characterizing the fundamental costs of not knowing key problem parameters in advance. Inspired by the Price of Anarchy in algorithmic game theory, we define the Price of Adaptivity which measures the multiplicative performance drop due to uncertainty in problem parameters, and - in a number of settings - establish nearly matching upper and lower bounds.

The talk is based on joint work with Maor Ivgi, Itai Kreisler, and Oliver Hinder.

Short Bio

Yair Carmon is an assistant professor of computer science at Tel Aviv university (currently on leave).  He works on the foundations of optimization and machine learning, focusing on questions about fundamental limits and robustness. Yair received a PhD from Stanford University, advised by John Duchi and Aaron Sidford, and M.Sc. and B.Sc. degrees from the Technion.

 

EE Seminar: Never Train from Scratch: FAIR COMPARISON OF LONG-SEQUENCE MODELS REQUIRES DATA-DRIVEN PRIORS

08 ביוני 2025, 15:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Never Train from Scratch: FAIR COMPARISON OF LONG-SEQUENCE MODELS REQUIRES DATA-DRIVEN PRIORS

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל (יש להיכנס לפני כן למודל,  לא באמצעות האפליקציה)- הרישום מסתיים ב- 15:10

Registration to the seminar will be done by scanning the barcode for the Moodle (Please enter ahead to the Moodle, NOT by application)- Registration ends at 15:10

 

 

Electrical Engineering Systems Seminar

 

Speaker: Ido Amos

M.Sc. student under the supervision of Prof. Amir Globerson

 

Sunday, 8th June 2025, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

Never Train from Scratch: FAIR COMPARISON OF LONG-SEQUENCE MODELS REQUIRES DATA-DRIVEN PRIORS

Abstract

Modeling long-range dependencies across sequences is a longstanding goal in machine learning and has led to architectures, such as state space models, that dramatically outperform Transformers on long sequences. However, these impressive empirical gains have been by and large demonstrated on benchmarks (e.g. Long Range Arena), where models are randomly initialized and trained to predict a target label from an input sequence. In this work, we show that random initialization leads to gross overestimation of the differences between architectures and that pretraining with standard denoising objectives, using only the downstream task data, leads to dramatic gains across multiple architectures and to very small gaps between Transformers and state space models (SSMs). In stark contrast to prior works, we find vanilla Transformers to match the performance of S4 on Long Range Arena when properly pretrained, and we improve the best reported results of SSMs on the PathX-256 task by 20 absolute points. Subsequently, we analyze the utility of previously-proposed structured parameterizations for SSMs and show they become mostly redundant in the presence of data-driven initialization obtained through pretraining. Our work shows that, when evaluating different architectures on supervised tasks, incorporation of data-driven priors via pretraining is essential for reliable performance estimation, and can be done efficiently.

 

Physical Electronics Seminar- Towards Energy-Efficient AI Hardware: Mixed-Signal In-Memory Computing and Ultra-Dense Die-to-Die Links

סמינר שמיעה לתלמידי תואר שני ושלישי

12 ביוני 2025, 11:00 
Room 011 Kitot Building  
Physical Electronics Seminar- Towards Energy-Efficient AI Hardware: Mixed-Signal In-Memory Computing and Ultra-Dense Die-to-Die Links

 

  

 

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני- This Seminar Is Considered A Hearing Seminar For Msc Students

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל בתחילת המפגש (יש להיכנס לפני כן למודל,  לא באמצעות האפליקציה)

Registration for the seminar will be done by scanning the barcode for the Moodle (Please enter ahead to the Moodle, NOT by application)

 

 

EE Seminar: Noisy Independent Component Analysis over Galois Fields of Prime Order

10 ביוני 2025, 15:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Noisy Independent Component Analysis over Galois Fields of Prime Order

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל (יש להיכנס לפני כן למודל,  לא באמצעות האפליקציה)- הרישום מסתיים ב- 15:10

Registration to the seminar will be done by scanning the barcode for the Moodle (Please enter ahead to the Moodle, NOT by application)- Registration ends at 15:10

 

Electrical Engineering Systems Seminar

 

Speaker: Ori Ohayon

M.Sc. student under the supervision of Prof. Arie Yeredor

 

Tuesday, 10th June 2025, at 15:00

Room 011, Kitot Building, Faculty of Engineering

Noisy Independent Component Analysis over Galois Fields of Prime Order

Abstract

Independent Component Analysis (ICA) is known as a powerful technique used for the separation of mixed signals. Most of the work done so far in this field focused on the problem formulation over the real R or complex C fields, while work on ICA over finite fields focused mostly on the theoretical aspect, and, as far as we know, only for the noiseless case.
The current work presents the basic concepts of the general framework of ICA over finite fields, motivation for real-life applications thereof (such as in Network Coding), and previous work that was done in this framework. We review and characterize random variables over finite fields (specifically over Galois Fields of Prime order GF(P)) and formulate the associated ICA problem for both the noiseless and the noisy cases.

In the core of this work, we discuss the previously developed AMERICA (Ascending Minimization of EntRopies for ICA) algorithm, and continue to analyze (using a Gaussian approximation) the probability of failure of a modification of AMERICA, which we call WEAK AMERICA, for the noisy model. The probability of failure which we analyze in this work refers to the probability of failing to estimate the inverse of the mixing matrix (up to permutation and scaling of the columns). We present corner cases in which the Central Limit Theorem (CLT) alone fails to provide a reliable approximation and can be improved using the Edgeworth expansion. In addition to the analysis, this work offers a first-of-its-kind semi-blind method to mitigate the effect of the noisy samples for ICA over finite fields. This method of noise mitigation is used in two new algorithms called AMERICANO (AMERICA with NOise) and SWEDEN (SWEeping over Different Estimated Noise parameters).

A special emphasis is placed on the key differences between the noisy and noiseless scenarios, which are reflected in the noisy probability of failure analysis, as well as in the new algorithms and methods for the noisy ICA.

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>