סמינר

הנדסה ביו רפואית

04 בינואר 2015, 14:15 
חדר 315 , הבניין הרב תחומי  

 

 

 

אלכסנדרה דנה

תלמידת המחלקה להנדסה ביו רפואית לתואר שלישי תרצה בנושא:

Understanding and modeling mRNA translation based on ribosome profiling data

Gene expression is the process in which information encoded in the DNA is used to synthesize new proteins. Naturally, understanding, modeling and engineering this fundamental process has important contribution to every biomedical discipline, including human health and biotechnology. Gene expression has two major steps: transcription of the DNA to mRNA molecules and the translation of the mRNA molecules to proteins by molecular machines called ribosomes.

During mRNA translation ribosomes attach to the messenger RNA (mRNA) and then scan it in a sequential manner; each such scanning produces a new protein. Recently, a new experimental method - ribosome profiling was suggested for large scale study of ribosomal movement on the transcript. This method is based on next-generation sequencing and enables simultaneous estimation of the relative time ribosomes spend on the messenger RNAs of all translated transcripts in a genome, at a resolution of single nucleotides.

This work presents various new aspects of translation that were studied by analyzing ribosome profiles of thousands of genes in various organisms and their relation to translation efficiency.  Among others, I decipher the way biophysical properties of the mRNA molecules affect translation; I develop novel computational simulation of this experiment; and I suggest novel filters for analyzing these data. The reported results should improve the understanding of the translation process and also contribute towards developing new methods for gene expression engineering.

The talk is mainly based on four papers published in the recent years:  Dana and Tuller, PLoS Comput Biol. 2012; Dana and Tuller, Nucleic Acids Res. 2014; Dana and Tuller, BMC Genomics. 2014; Dana and Tuller, G3. 2014.

העבודה נעשתה בהנחיית  דר' תמיר טולר, המחלקה להנדסה ביו-רפואית, אוניברסיטת תל-אביב

 

ההרצאה תתקיים ביום ראשון 04.01.15, בשעה 14:15,

בחדר 315, הבניין הרב תחומי, אוניברסיטת תל אביב

סמינר המחלקה להנדסה ביו רפואית

Traction force microscopy: what cell-gel mechanical interactions can tell us

04 בינואר 2014, 14:15 
חדר 315 , הבניין הרב תחומי  

 

Daphne Weihs

Faculty of Biomedical Engineering, Technion-IIT

 

Traction force microscopy: what cell-gel mechanical interactions can tell us

 

Traction force microscopy (TFM) is a method that has been utilized in the last decade to evaluate the forces applied by cells to underlying gels. Cells utilize traction forces to adhere, move, and apply force to their environment, as part of their normal function. Variation in forces between different cell types, following treatment, or following onset of disease and can reveal dynamic structural changes within the cell that may relate to changes in cell function. The mechanical interaction of cells with their environment depends on the cell type, its current activity, and the dimensionality and stiffness of the gel. Using 2-dimensional (2D), elastic polyacrylamide gels, with fluorescent particles embedded under their surface, or 3D collagen gels with dispersed particles, we are able to quantitatively evaluate forces applied by cells. In the current talk, I will explain the TFM method and approach in 2D and in 3D gel systems, providing detailed examples from three different cell types. I will provide examples on (1) invasive cancer cells (in 2D and 3D), showing differences between cancer and benign cells (2) changes in cell-gel interactions when undifferentiated stem cells grow into a 3D embryoid body; and (3) differences between pre-adipose cells and differentiated adipocytes. The experiments highlight quantitative similarities and differences relating to cell function and activity.

 

ההרצאה תתקיים ביום ראשון ה 04.01.15 בשעה 14:15

בחדר 315 ,הבניין הרב תחומי ,אוניברסיטת תל אביב

 

הנדסה ביו רפואית - סמינר 04.01.15

 

Understanding and modeling mRNA translation based on ribosome profiling data

04 בינואר 2014, 14:15 
חדר 315 , הבניין הרב תחומי  

תלמידת המחלקה להנדסה ביו רפואית לתואר שלישי תרצה בנושא:

Understanding and modeling mRNA translation based on ribosome profiling data

Gene expression is the process in which information encoded in the DNA is used to synthesize new proteins. Naturally, understanding, modeling and engineering this fundamental process has important contribution to every biomedical discipline, including human health and biotechnology. Gene expression has two major steps: transcription of the DNA to mRNA molecules and the translation of the mRNA molecules to proteins by molecular machines called ribosomes.

During mRNA translation ribosomes attach to the messenger RNA (mRNA) and then scan it in a sequential manner; each such scanning produces a new protein. Recently, a new experimental method - ribosome profiling was suggested for large scale study of ribosomal movement on the transcript. This method is based on next-generation sequencing and enables simultaneous estimation of the relative time ribosomes spend on the messenger RNAs of all translated transcripts in a genome, at a resolution of single nucleotides.

This work presents various new aspects of translation that were studied by analyzing ribosome profiles of thousands of genes in various organisms and their relation to translation efficiency.  Among others, I decipher the way biophysical properties of the mRNA molecules affect translation; I develop novel computational simulation of this experiment; and I suggest novel filters for analyzing these data. The reported results should improve the understanding of the translation process and also contribute towards developing new methods for gene expression engineering.

The talk is mainly based on four papers published in the recent years:  Dana and Tuller, PLoS Comput Biol. 2012; Dana and Tuller, Nucleic Acids Res. 2014; Dana and Tuller, BMC Genomics. 2014; Dana and Tuller, G3. 2014.

העבודה נעשתה בהנחיית  דר' תמיר טולר, המחלקה להנדסה ביו-רפואית, אוניברסיטת תל-אביב

 

ההרצאה תתקיים ביום ראשון 04.01.15, בשעה 14:15,

בחדר 315, הבניין הרב תחומי, אוניברסיטת תל אביב

EE Seminar: Dr. Raviv Raich

~~(The talk will be given in English)

Speaker: Dr. Raviv Raich,
Associate Professor, School of Electrical Engineering and Computer Science,
Oregon State University, Corvallis, OR 97331-5501

Thursday, January 1st, 2015
13:45 - 14:45
Room 011, Kitot Bldg., Faculty of Engineering

Efficient instance annotation in multiple-instance multiple-label learning
Abstract
Recent work in machine learning focuses on the framework of multiple instance multiple label learning. In this setting, objects consist of multiple components termed instances. For example, an image may consist of multiple segments.
Moreover, objects are labeled by a set of labels. For examples, images can be labels with a list of objects present in the image (e.g., 'sky' and 'building'). The multiple instance multiple label framework is considered for a variety of
application areas including computer vision, acoustic scene analysis, and activity recognition. Bag level prediction, i.e., the prediction of the label set of a multi-instance object has been a focus of research for over a decade. Our interest
is in the somewhat less studied problem of instance annotation, the problem of associating each instance with a label. A novel model and computationally efficient inference, are introduced. The model can be used for both bag level
prediction and instance annotation. Empirical evaluations show that the approach outperforms state-of-the-art methods for instance annotation on a collection of both synthetic and real datasets.

 

01 בינואר 2015, 13:45 
חדר 011, בניין כיתות-חשמל  

Seminar 8.1.15

 

 

Yoav Livneh

M.Sc. student under supervision of Prof. Yossi Rosenwaks, Dr. Philip Klipstein

School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

On the subject:

Band Structure Calculation and Analysis

of Antimonide Based Type-II Superlattices

08 בינואר 2015, 9:30 
Room 101, Software Eng. Build.  
Seminar 8.1.15

  Physical Electronics Dept.

 

You are invited to attend a lecture

By

 

 

 

Yoav Livneh

(M.Sc. student under supervision of Prof. Yossi Rosenwaks, Dr. Philip Klipstein,

School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel)

 

On the subject:

 

Band Structure Calculation and Analysis

of Antimonide Based Type-II Superlattices

 

Superlattices are a kind of quantum structure, made up of alternating thin layers of two materials. By changing the layer widths of the individual materials in the superlattice, we can control the optical and electrical properties of the material (bandgap engineering). In recent years, InAs/GaSb type-II superlattices (T2SLs) have become a very attractive potential sensing material in photonic devices used for infrared sensing and imaging.

This work presents a new and effective model for the prediction of T2SL band structure and absorption spectra, based on the k.p method, including a novel approach to the effect of the interfaces between the two individual materials. The main difference between this method and other k.p based methods is in the operator ordering, and in the use of delta-function like interface potentials. The model has reduced the number of fitting parameters to only six, all of which can be deduced empirically.

Calculation results show very good agreement with measurements on over 30 samples grown by Molecular Beam Epitaxy, both in the band gaps and the absorption spectra.

 

 

Thursday, 8 January 2015 at 09:30

Room 101, Software Eng. Build.

 

 

Special Seminar

Collagen-based nano-biocomposite materials and their potential
applications as tissue scaffolds

Prof. Rina Tannenbaum

Stony Brook University

31 בדצמבר 2014, 16:00 
בניין כיתות, חדר 101  

7.1.15

07 בינואר 2015, 11:00 
Wolfson 206  
7.1.15

 

יועצים אקדמיים

שם

מגמה/שנת לימוד

תחום התמחות

דוא"ל

פרופ' אבישי אייל

חשמל / א' ו-ב'

אלקטרואופטיקה, ביו-אלקטרוניקה

avishay@eng.tau.ac.il

פרופ' עופר עמרני

חשמל / ג' ו-ד' וכן חשמל-אביב / ג' ו-ד'

תקשורת, עיבוד אותות

ofera@eng.tau.ac.il

פרופ' דורון שמילוביץ

חשמל-אביב / א' ו-ב'

אנרגיה והספק

shmilo@post.tau.ac.il

ד"ר אמיר נתן

חשמל-פיזיקה / א'-ד'

התקנים, חומרים

amirnatan@post.tau.ac.il

פרופ' אריה רוזין

חשמל-פיזיקה / א'-ד'

התקנים

ruzin@tauex.tau.ac.il

פרופ' יצחק תמו

חשמל-מדמ"ח / א'-ד'

מחשבים

tamo@post.tau.ac.il

ד"ר יקיר חדד

 

אלקטרומגנטיות

hadady@eng.tau.ac.il

פרופ' ג'ורג וייס

 

בקרה

gweiss@eng.tau.ac.il

 

האנרגיה המתחדשת תאפשר לספק מים לכולם

28 דצמבר 2014

פרויקט ייחודי של האיחוד האירופי בתחום המשולב של האנרגיה המתחדשת ומים מיועד לפתח טכנולוגיה חדשה ומהפכנית לטיהור מים מזוהמים והפיכתם למים המיועדים לשתייה. אוניברסיטת תל-אביב היא אחד המרכזים שנבחרו לפרויקט

במעבדת המחקר של ד"ר הדס ממן, בשיתוף עם  ד"ר דרור אבישר והדוקטורנטית אינה הורוביץ, מפתחים במסגרת זו את הטכנולוגיה בעזרת ראקטור ממברנלי פוטוקטליטי, השואפת להיות זולה ויעילה, ללא צורך בכימיקלים.

כתבה ב- Ynet על מחקר של הדס ממן:

http://www.ynet.co.il/articles/0,7340,L-4606514,00.html

 

Seminar 31.12.14

31 בדצמבר 2014, 16:00 
וולפסון 206  
Seminar 31.12.14

Physical Electronics Dept.

 

***** Seminar *****

 

Gideon Segev

 

(PhD. student under the supervision of Prof. Yossi Rosenwaks and Prof. Abraham Kribus)

School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel

 

 

Photon Enhanced Thermionic Emission for Solar Energy Conversion

 

To date, the vast majority of solar energy conversion research focused on two parallel paths: photovoltaics and solar thermal energy conversion. Attempts were made to combine photovoltaic and thermal conversion such as cogeneration and thermo-photonics. However, these attempts did not yield very high efficiencies, and these concepts were not widely implemented. As a result, researchers are still looking for a conversion path that exploits both the photonic nature of sunlight and the high temperatures that can be achieved by focusing it.

Photon Enhanced Thermionic Emission (PETE) was recently proposed as a novel concept in solar energy conversion. Similar to traditional thermionic emission devices, a PETE device consists of a high-temperature cathode emitting energetic electrons and a lower temperature anode absorbing the electrons. By using a semiconductor cathode, optically generated electrons increase the cathode’s conduction band charge population allowing high electron emission at temperatures lower than the common range for thermionic emitters. In this seminar, we will discuss the efficiency limits of PETE devices. The theoretical efficiency limits of PETE converters can theoretically rise above 40% at concentration of 1000 suns, exceeding the Shockley Queisser limit for an ideal single junction PV cell. When coupled to secondary thermal cycle the limits were shown to be exceptionally high reaching close to 70% for a flux concentration 1000. Furthermore, unlike traditional thermionic converters, PETE conversion is possible even under isothermal conditions. Next, the loss mechanisms of more realistic PETE devices will be surveyed through elaborated models. Negative space charge between the two electrodes and surface recombination at the cathode contact are shown to heavily restrict the conversion efficiency. Implementation of back surface field layers in the form of homo-junction or hetero-junction cathodes can reduce surface recombination and bring the efficiency closer to the ideal limits.

 

Wednesday, December 31, 2014, at 16:00

Room 206, Wolfson Mechanical Engineering Building

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>