סמינר מחלקה של אנדי טוואקו - להבות קרירות וטכנולוגיות בעירה חדשות

12 בפברואר 2024, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של אנדי טוואקו - להבות קרירות וטכנולוגיות בעירה חדשות

 

SCHOOL OF MECHANICAL ENGINEERING SEMINAR
Monday February 12.2.2024 at 14:00

Wolfson Building of Mechanical Engineering, Room 206

 

Towards an Environmentally Sustainable Future: Cool flames and Novel Combustion Technologies

 

Andy Thawko, Ph.D.

Postdoctoral Research Fellow, Mechanical and Aerospace Engineering Department,

Princeton University, USA

Email: andyth@princeton.edu

 

As global consensus on the critical need to mitigate greenhouse gas emissions and combat anthropogenic climate change grows, there is an urgent imperative to study the fundamentals of low-temperature combustion. This research is essential not only to improve the thermal efficiency of systems in the energy and transportation sectors but also to pave the way for the development of innovative technologies grounded in low-carbon and carbon-neutral fuels. While high-temperature combustion and hot flames have been extensively studied for decades, a new frontier in combustion science has emerged—low-temperature combustion and cool flames, with only a few research groups worldwide actively investigating this field. Our research on high-pressure cool flames led to the discovery of a new pressure-dependent relation for the cool flame heat release rate. This finding, distinct from the well-established pressure-independent relation of hot flames, emphasizes the profound influence of pressure on cool flames. Furthermore, I will introduce the radical index theory for high-pressure cool flames, offering a quantitative measure of the low-temperature reactivity of fuels. This measure serves to assess the suitability of existing or newly synthesized fuels for advanced propulsion technologies based on low-temperature combustion. Finally, I will present a new understanding of the kinetic enhancement effect in the deflagration to detonation transition (DDT), allowing acceleration of the shock-ignition coupling and the detonation transition. The insights gained from this research are significant to further develop new methods based on ignition enhancers such as plasma-assisted DDT because DDT acceleration is crucial for eliminating detonation stability and reducing heat losses, leading to improved combustion efficiency and enhanced thermodynamic cycles by up to 30%. This seminar aims to shed light on the pivotal role of low-temperature combustion in the ongoing global effort to address climate change. Through our research, we contribute valuable insights that have implications for both fundamental combustion science and the practical development of environmentally sustainable technologies.

 

 

Andy Thawko has been Postdoctoral Research Fellow at Princeton University since 2022. His research interests include thermofluids and combustion science with a focus on low-temperature combustion, energy decarbonization, and kinetic enhancement of processes. Andy completed his Ph.D. in 2021 at the Grand Technion Energy Program, conducting research in the Faculty of Mechanical Engineering. Prior to this, he earned his M.E. in Energy Engineering in 2013, and his B.S. in Mechanical Engineering in 2009, both from the Technion.

סמינר מחלקה של פרופ' אולג גנדלמן

20 במאי 2024, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של פרופ' אולג גנדלמן

פרטים יפורסמו בהמשך

סמינר מחלקה של בני בר און - איך בונים "גשר"? האסטרטגיה של הטבע לחיבור חומרים קשים ורכים

18 במרץ 2024, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של בני בר און - איך בונים "גשר"? האסטרטגיה של הטבע לחיבור חומרים קשים ורכים

 

 

Monday 18.03.2024 at 14:00

Wolfson Building of Mechanical Engineering, Room 206

 

How to build a "bridge"?

Nature's strategy for connecting hard and soft materials

 

Benny Bar-On

Department of Mechanical Engineering, Ben-Gurion University of the Negev, Israel

 

Load-bearing biological materials employ specialized bridging regions to connect material parts with substantially different mechanical properties (hard vs. soft). While such bridging regions have been extensively observed in diverse biomaterial systems that evolved through distinctive evolutionary paths—including arthropod parts, dental tissues, and marine threads—their mechanical origins and functional roles remain vague.

In my talk, I introduce a hypothesis that these bridging regions have primarily formed to minimize the near-interface stress effects between the connected material parts, preventing their splitting failure, and obtain a simple theoretical law for the optimal mechanical properties of such bridging regions. I demonstrate this principle through Finite Element simulations and physical experiments on a model synthetic-material system and verify its predictability for different biomaterial systems. The bridging principles of biological materials can be implemented into advanced material designs—paving the way to new forms of architected materials and composite structures with extreme load-bearing capabilities.

 

תמונה שמכילה טקסט, צילום מסך, עיצוב גרפי, כחול חשמלי

התיאור נוצר באופן אוטומטי 

 

Biography: Benny Bar-on is a professor at the Department of Mechanical Engineering at the Ben-Gurion University of the Negev. He received his Ph.D. in Mechanical Engineering from the Technion and was a postdoctoral fellow at the Weizmann Institute of Science and the Max-Planck Institute of Colloids and Interfaces. Prof. Bar-On's research aims to identify structural–mechanical relationships in load-bearing biological materials, including plant organs, mineralized tissues, and arthropod cuticles.

סמינר מחלקה של עופר מנור - אינטראקציה אלקטרו-קינטית בין גלים אקוסטיים משטחים ופתרונות אלקטרוליטים

11 במרץ 2024, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של עופר מנור - אינטראקציה אלקטרו-קינטית בין גלים אקוסטיים משטחים ופתרונות אלקטרוליטים

 

 

Monday 11.03.2024 at 14:00

Wolfson Building of Mechanical Engineering, Room 206

 

Electrokinetic interaction between Surface Acoustic Waves and Electrolyte Solutions 

 

Ofer Manor

1Applied Mathematics, Technion – IIT, Haifa; 2Chemical Engineering, Technion – IIT, Haifa 

 

This study commenced several years ago when we asked ourselves how MHz- to GHz-frequency surface acoustic waves (SAWs) that travel in a solid substrate influence the dynamics of ions in neighboring electrolyte solutions. While it is known that electrolyte solutions affect SAWs in piezoelectric materials through the conductivity of the electrolyte, our question followed an observation in the opposite direction: Acousto-capillary flows in micron thick films of water, excited by SAWs, did not show the nice agreement to fluid mechanics theory that silicon oils showed. The difference between oil and water dynamics suggests contributions of ion pressure, also known as electrical double layer (EDL) pressure, to water film dynamics. Moreover, EDLs and SAWs exist at similar time and length scales, so that one expects an interaction. [1] 

 

EDLs of ions are a surface phenomenon. These are nanometer thick clouds of ions that appear at the charged interface between a substrate and an electrolyte solution and give rise to the complexity of biology and to countless industrial processes and products from water desalination to shampoo and super-capacitors. Ions diffuse through the EDL nanometer thickness in nanoseconds: These are ion-specific times for charging or discharging the EDL and are known as the EDL relaxation times. When similar to the periodic times of SAWs, one expects interaction; albeit the SAW travels in solids and the EDL exists in electrolyte solutions. However, both phenomena become entangled through mechanical and (sometimes) electrical field effects.  

 

Ions in the EDL vibrate and may undergo electro-mechanical resonance at the exciting SAW frequency, which results in the leakage of same frequency electrical fields off the EDL; see figure 1. By measuring the electrical leakage, we identify ion-specific relaxation times and hence the intrinsic rate of EDL charge and discharge: We show a new type of spectroscopy in the MHz ultrasonic frequency spectrum that gives ion fingerprints and their dynamics in EDLs and observe that dynamic EDL is much more than a capacitor. [2] 

 

תמונה שמכילה חשמל, כבל, הנדסת חשמל, מכונה

התיאור נוצר באופן אוטומטיתמונה שמכילה טקסט, צילום מסך, עיצוב גרפי, גרפיקה

התיאור נוצר באופן אוטומטיFigure 1: (right) Illustration of a surface acoustic wave (SAW) that travels in a solid substrate and dynamically perturbs ion positions in an electrical double layer (EDL) by generating an evanescent wave in the neighboring electrolyte solution, where red and blue indicate fast and slow ion motions [3]; this results in the leakage of an electrical field,

E�→

, that we measure using our experimental system (left). 

 

 

 

References 

[1] O. Dubrovski and O. Manor, Revisiting the electroacoustic phenomenon in the presence of surface acoustic waves, Langmuir, 37, 14679–-14687 (2021) 

[2] S. Aremanda and O. Manor, Measurements of Ion Dynamics and Electro-Mechanical Resonance in an Electrical Double Layer near a Surface Acoustic Wave, J. Phys. Chem. C, 127, 20911–20918 (2023) 

[3] O. Manor, L.Y. Yeo, and J.R. Friend, The appearance of boundary layers and drift flows due to high-frequency surface waves, J. Fluid Mech., 707, 482–495 (2012) 

 

4/3/2024 

Biography: Ofer Manor 

 

Ofer Manor is an Associate Professor at the Department of Chemical Engineering at the Technion in Haifa and is associated with the Interdepartmental Program for Applied Mathematics. He is a Marie Curie Fellow and a recipient of the Henri Gutwirth Research Award.  

 

Research 

Ofer uses continuum theory and experiment to study surface phenomena and fluid mechanics, many times in the presence of seismic and ultrasonic waves. He further uses classical density functional theory to investigate structure and properties of complex fluids and surface forces.  

 

Education and positions 

Ofer received his BSc diploma from the Wolfson Department of Chemical Engineering in the Technion in 2003. He then accepted an engineering position at Rafael Ltd. (2003-2007) while obtaining his MSc diploma in the field of fluid mechanics at the Technion in 2006. He received his PhD diploma from the department of Mathematics in the field of Colloid Physics at The University of Melbourne, Australia, in 2010, which was followed by postdoctoral fellowships at the Department of Mechanical Engineering at Monash University (2010-2012) and at the Department of Electrical Engineering at RMIT University (2012-2013) in Australia; both postdocs were in the field of acousto-fluidics. Ofer joined the Technion in 2013, where he has been teaching various courses in transport phenomena, numerical analysis, and colloid and surface science.   

 

מהנדס/ת בקרה

קצת על התפקיד

למפעל מבת מערכות טילים בחטיבת מערכות טילים וחלל דרוש/ה מהנדס/ת בקרה.
התפקיד כולל:
• הגדרה וניתוח הדרישות לתכנון המערכת ופילוח הדרישות לתתי המערכות
• תכנון בקרת טיסה לינארי/לא לנארי
• שיטות תכנון בקרה אופטימאלית/רובסטית
• תכנון הנחיה וביות
• ביצוע אנליזות לתוצאות התכנון

סמינר מחלקה שי פלדפוגל

29 בינואר 2024, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה שי פלדפוגל

פרטים יפורסמו בהמשך

סמינר מחלקה של איתי גריניאסטי

15 בינואר 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של איתי גריניאסטי

פרטים יפורסמו בהמשך

Shining a Light on Machine Learning: Investigating the Intersection of Deep Learning and Optics - Barak Hadad

סמינר המחלקה לאלקטרוניקה פיזיקלית

 

02 בינואר 2024, 15:00 
011,Kitot Building  
Shining a Light on Machine Learning: Investigating the Intersection of Deep Learning and Optics - Barak Hadad

 

You are invited to attend a lecture on Tuesday, January 2, 2024, at 15:00

Wolfson Kitot building, Room 011

Shining a Light on Machine Learning: Investigating the Intersection of Deep Learning and Optics

 

Barak Hadad

Ph.D. student under the supervision of Prof. Alon Bahabad

 

Abstract

This study investigates the convergence of deep learning (DL) and optics, exploring the interdisciplinary applications at the intersection of physics and computer science. The research is divided into two sections.

The first section provides a survey of successful machine learning (ML) applications, with a specific focus on DL algorithms, in solving various optical problems. These applications span areas such as meta-material design, image reconstruction, and optical communications demultiplexing. By highlighting the effectiveness of ML techniques in optics, this section demonstrates their potential for addressing complex challenges in the field. The second section concentrates on the implementation of computational algorithms using optical systems to achieve faster and more parallel computing. Leveraging the distinctive characteristics of light and optics, novel approaches are explored to enhance the computational power and efficiency of DL algorithms. This section showcases how optical systems can enable more efficient and scalable DL computations.

By integrating DL algorithms into optical applications and fostering collaboration between optics and computer science, this research contributes to the development of innovative techniques and tools for tackling complex problems. The findings have implications for diverse fields, ranging from optical engineering to advanced computing

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>