סמינר LMI -מרכז אור וחומר מארח את Dr. Tal Schwartz

17 במאי 2023, 13:00 
הפקולטה להנדסה אוניברסיטת תל אביב, בנין כיתות ,אולם 011  
 סמינר  LMI -מרכז אור וחומר מארח את Dr. Tal Schwartz

LMI Seminar:

Molecules in a Quantum-Optical Flask

Dr. Tal Schwartz

Physical Chemistry Department, TAU

Wednesday  May  17th,  2023

13:00-14:00

Light refreshments and drinks will be served at 12:30

Auditorium 011, Engineering Classroom Building,  Faculty of Engineering, Tel-Aviv University

 

Abstract: When confined to small dimensions, the interaction between light and matter can be enhanced up to the point where it overcomes all the incoherent, dissipative processes. In this "strong coupling" regime the photons and the material start to behave as a single entity, having its own quantum states and energy levels.

In this talk I will present the fundamental physics of strong coupling in hybrid photonic-molecular structures, and how such cavity-QED effects can be employed for controlling material properties and molecular processes. This includes, for example, photochemical reactions [1], the enhancement of transport in organic semiconductors [2-3] and potentially tailoring the mesoscopic properties of organic crystals, by hybridizing intermolecular vibrations with electromagnetic THz fields [4-5]. Finally, I will discuss our recent discovery [6], where we showed that the finite velocity of light and retardation effects must be taken into account in cavity-QED physics.

[1] J. A. Hutchison, T. Schwartz, C. Genet, E. Devaux, and T. W. Ebbesen, "Modifying Chemical Landscapes   by Coupling to Vacuum Fields," Angew. Chemie Int. Ed. 51, 1592 (2012).

[2] G. G. Rozenman, K. Akulov, A. Golombek, and T. Schwartz, "Long-Range Transport of Organic Exciton-Polaritons Revealed by Ultrafast Microscopy," ACS Photonics 5, 105 (2018).

[3] M. Balasubrahmaniyam, A. Simkovich, A. Golombek, G. Ankonina, and T. Schwartz, "From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations," Nat. Mater. 22, 338 (2023).

[4] R. Damari, O. Weinberg, D. Krotkov, N. Demina, K. Akulov, A. Golombek, T. Schwartz, and S. Fleischer, "Strong coupling of collective intermolecular vibrations in organic materials at terahertz frequencies," Nat. Commun. 10, 3248 (2019).

[5] M. Kaeek, R. Damari, M. Roth, S. Fleischer, and T. Schwartz, "Strong Coupling in a Self-Coupled Terahertz Photonic Crystal," ACS Photonics 8, 1881 (2021).

[6] M. Balasubrahmaniyam, C. Genet, and T. Schwartz, “Coupling and decoupling of polaritonic states in multimode cavities”. Phys. Rev. B 103, 1 (2021).

 

 

 

 

קולוקוויום: Colloquium: It's Just a Game: Designing Distributed Multiagent Protocols by Ilai Bistritz

14 במאי 2023, 15:00 
011 בנין כיתות  
קולוקוויום: Colloquium: It's Just a Game: Designing Distributed Multiagent Protocols by Ilai Bistritz

 

Electrical Engineering Colloquium 

 

 

Speaker: Dr. Ilai Bistritz

Title: It's Just a Game: Designing Distributed Multiagent Protocols

 

Abstract 

Automation relegates many decision-making processes from humans to machines. In recent years, automation is powered by machine learning, which enables trained machines to achieve expert-level performance in some tasks. Many of these tasks require humans to interact (e.g., driving, delivery, construction), so automating them will result in interacting machines where the decisions of one machine affect others. As game theory predicts, this interaction can lead to a globally inefficient equilibrium. However, machines follow programmatic objectives and protocols that, unlike humans, are not limited by selfish interests, but by information and resources. This modern paradigm calls for new tools to design efficient multiagent protocols.
 
We will first highlight the major design challenges and then discuss the distributed energy allocation problem as a concrete example. We formulate this problem as a game and study the performance of best-response dynamics (BRD) as a distributed algorithm that the sources run to allocate energy to consumers. We show that  "bad networks" exist where BRD suffers from poor performance. However, empirically, these bad networks are rare. Drawing inspiration from this empirical finding, we analyze BRD as a random process in a random game. We show that, with high probability, BRD is asymptotically optimal (in the size of the network). Applying our “random games approach” broadly may reveal that BRD is efficient more often than the worst-case overly pessimistic approach would suggest. This is an encouraging finding since BRD requires little to no coordination between the agents.

 

Light refreshments will be served before the lecture

This colloquium is not counted toward seminar credit.

ההרצאה לא מזכה בקרדיט שמיעת סמינרים.

סמינר מחלקה של רוני גולדשמיט פיתוח חיישני זרימה במחירים סבירים לאתגר האקלים

15 במאי 2023, 14:00 
פקולטה להנדסה  
0
סמינר מחלקה של רוני גולדשמיט פיתוח חיישני זרימה במחירים סבירים לאתגר האקלים

 

School of Mechanical Engineering Seminar
Monday May 15.5.2023 at 14:00

Wolfson Building of Mechanical Engineering, Room 206

 

Developing affordable flow sensors for the climate challenge

 

 

Dr.  Roni goldshmid

Dr. Roni Goldshmid is a postdoctoral scholar in the Graduate Aerospace Laboratories at the California Institute of Technology

 

Accurate mapping of the wind can enable more efficient renewable energy technologies as well as more accurate monitoring and modeling of weather and climate. Current ubiquitous wind sensors provide pointwise records but scaling them to full field requires installation and maintenance of a large number of sensors, which can be cost prohibitive.  Therefore, I will demonstrate an affordable alternative in which quantitative estimates of wind speed and direction are inferred based on visual observations of associated flow-structure interactions such as swaying trees and flapping flags, named visual anemometry (VA). To explore generalizability of VA, i.e., the procedure that does not require calibration measurements or a priori collection of training data, I conducted a laboratory study of VA in an open circuit wind tunnel using eight species of vegetation and modeled the relationship between the vegetation displacement fields and wind velocity.  

 

Bio: 

Dr. Roni Goldshmid is a postdoctoral scholar in the Graduate Aerospace Laboratories at the California Institute of Technology. Roni received her B.S. at the University of California, Berkeley, and her M.S. and Ph.D. in the department of Civil and Environmental Engineering at the Technion – Israel Institute of Technology. Roni was named a rising star in mechanical engineering by Stanford University (2022), has authored two successful grants (NSF 2019 and ISF 2018) and has received the Grinshpen prize for excellent research in environmental engineering and air quality (2016). Her research interests and expertise include experimental fluid dynamics, where she focuses on fundamental and applied problems such as fluid-structure interactions, boundary layer flows, and interpretation of imperfect empirical data. 

https://tau-ac-il.zoom.us/j/86497933118

יום פרויקטים של בית הספר להנדסת חשמל בחסות חברת INTEL

27 ביוני 2023, 9:00 - 17:00 
 
Save the date

יום פרוייקטים במחלקה לחשמל- שמרו את התאריך ה27.06

הנכם.ן מוזמנים.ות ליום פרוייקטים בחשמל שיערך ביום שלישי ה27.06.23 ויתקיים בפקולטה להנדסה בבניין כיתות חשמל. 

 

נשמח לראותכם בין אורחינו,

 

ארגון עמיתי התעשייה והמחלקה לחשמל מהפקולטה להנדסה. 

 

לינק להזמנה

 

סמינר מחלקה של צחי כהן -לוקליזציה של הד בלתי משתנה באמצעות עטלפים (אוזן חיצונית)

26 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של צחי כהן - לוקליזציה של הד בלתי משתנה באמצעות עטלפים (אוזן חיצונית)

 

 

 

 

School of Mechanical Engineering Seminar
Monday, June 26, 2023, at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

 

Invariant Echo-Localization Using Bat Pinnae (External Ear)

 

Zahi Cohen

M.Sc. Student of Prof. Yossi Yovel

Sound localization is arguably one of the most important functions of the vertebrate auditory system. Animals must properly localize the sound of a predator, a prey or a potential mate. The mammalian external ear (the pinnae) has evolved especially to assist sound localization. The pinnae is thought to generate spectral cues that enable assigning a specific sound spectrum to a specific direction in space. Echolocating bats must constantly localize the direction of acoustic targets – the echoes reflected from different objects. Bats have a uniquely difficult task because echoes are naturally filtered (due to target shape and distance) independently of target direction. To examine if and how the bat pinna allows solving this ambiguity, we used a bio-mimetic system which included a 3D model of the bat pinna and which allowed us to emit bat-like echolocation signals and record the echoes. In our study, we focused on echolocating bats and showed how crucial external ears are for echo-localization. The setup model that included pinnae performed far better than the no-pinnae model allowing accurate sound localization independently of object shape and distance. The pinnae also improved the uniformity of the performance – allowing better sound localization for any azimuth angle. Using a simple computational and physical model, we managed to quantify the advantage of evolving external ears. Unlike most previous studies, we generated actual echoes from various shapes and estimated our ability to localize them based on the reflected spectra, comparing a setup that included a 3D model of the external ear to one that did not. We developed a mathematical framework to estimate the azimuth of the sound source based on its spectrum, and we specifically examine how pinnae affect localization accuracy for targets of different shapes and at different distances.

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

סמינר מחלקה של ליאור מורדוך

28 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של ליאור מורדוך

פרטים יפורסמו בהמשך

סמינר מחלקה של חן דהן שהרבני - מודלים מיקרו-מכאניים רב-פאזיים של PHFGMC עבור חומרים מרוכבים מטריצת קרמיקה מבוססי C/C-SiC

21 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של חן דהן שהרבני - מודלים מיקרו-מכאניים רב-פאזיים של PHFGMC עבור חומרים מרוכבים מטריצת קרמיקה מבוססי C/C-SiC

 

School of Mechanical Engineering Seminar
Wednesday June 21.6.2023

Wolfson Building of Mechanical Engineering, Room 206

 

Multi-phase PHFGMC micromechanical models for C/C-SiC based Ceramic Matrix Composites

 

Chen Dahan Sharhabani

 

M.Sc. research under the supervision of Prof. Rami Haj-Ali Tel Aviv University, Department of Mechanical Engineering

 

 

New advanced carbon-based Ceramic Matrix Composites (CMCs) are a novel class of materials that overcome the oxidation encountered in C/C applications, including hypersonic systems. CMCs inhibit good mechanical properties (relative to C/C), favorable damage tolerance (Compared to ceramics), and relatively low density. This cluster of properties advances the use of CMCs in high-temperature aerospace, energy, and transport applications, where an oxidation environment is present. The properties of fiber-reinforced ceramics depend strongly on their microstructure and composition. In addition, CMC final thermomechanical properties depend strongly on fiber and ply architecture and the manufacturing parameters controlling the different thermal steps used during manufacturing.

An iterative material design development and manufacturing, followed by material characterizations and evaluations, can be cost-prohibitive and requires a longtime approach. This study advocates using predictive micromechanical models in CMC material design to reduce cost and design time cycle. Most micromechanical models consider the phases that inhibit the composite material and can perform average or equivalent properties over the volume of the phases. More advanced and refined micromodels recognize and account for several microstructural details, including dominant phases and their interface (or interphase) parameters. These refined models should be capable of nonlinear and damage predictions and can be readily used to study the effect of porosity (or voids) on elastic behavior. 

The current study introduces a refined micro-modeling framework that recognizes several material and microstructural details of the CMC material using the parametric high-fidelity generalized method of cells (PHFGMC). The PHFGMC can attain high-accuracy solutions for realistic physical problems of composite materials and allows the nonlinear thermomechanical solution for multiscale and multi-phase three-dimensional problems. 

 A two-level hierarchical framework based on the PHFGMC micromechanical model is implemented using CT-based C/C-SiC ceramic matrix composite scan geometries. Towards that goal, two nested PHFGMC micromechanical models are nested and integrated to represent the CMC micro and meso material levels.   The proposed framework enables a realistic depiction of the material structure and allows for calculating the effective orthotropic properties of a single lamina. The proposed modeling can be used to design a broad class of CMC materials with different weave architectures. Our PHFGMC prediction results were compared to mechanical properties conducted in collaboration with Rafael's advanced material lab for the tensile behavior of CMC specimens. The proposed PHFGMC framework demonstrated good prediction results.

 

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

 

סמינר מחלקה של עומר טל - ביומכניקה של מסתמי אבי העורקים מסויידים: מודלים חזויים של גדילה וניתוח מכני של תיקון TAVI

21 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של עומר טל - ביומכניקה של מסתמי אבי העורקים מסויידים: מודלים חזויים של גדילה וניתוח מכני של תיקון TAVI

 

School of Mechanical Engineering Seminar
Wednesday June 21.6.2023

Wolfson Building of Mechanical Engineering, Room 206

 

Biomechanics of Calcified Aortic Valves:  Predictive Growth Models and Mechanical Analysis of TAVI Repair

 

Omer Tal

 

M.Sc. research under the supervision of Prof. Rami Haj-Ali Tel Aviv University, Department of Mechanical Engineering

 

 

The aortic valve (AV) is one of four heart valves and is the final one encountered by oxygenated blood as it leaves the heart. It is responsible for preventing the backflow of oxygen-rich blood from the aorta into the left ventricle during diastole. Aortic stenosis (AS) is the most prevalent of all valvular heart diseases in developed countries. Roughly 25% of people over 65 have AV thickening and 3% over 75 have severe stenosis. AV calcification refers to the inflammation and remodeling of the extracellular matrix, resulting in the formation of bone-like structures on the valve. Calcified AS is the leading cause of valve replacement in developed nations. More than 50% of patients diagnosed with AS have bicuspid aortic valves (BAV), and their disease progression rate is accelerated compared to patients with a tricuspid aortic valve (TAV). Transcatheter Aortic Valve Implantation (TAVI) is a minimally invasive procedure used to replace a damaged AV without open-heart surgery. Since its introduction in 2002, TAVI has become an increasingly preferred alternative to surgical aortic valve replacement.

This study presents a validation and extension of the theoretical framework of the Reversed Calcification Technique (RCT) previously proposed in our Lab. RCT enables the reconstruction of patient-specific aortic valve calcification progression, aiming to encompass the timeline from initiation to the current state. Notably, this study incorporates a time scale into the RCT theory, transforming it into a robust quantitative method capable of reconstructing calcification morphology and quantifying calcification volume at any relevant time in the past. Two approaches are introduced and rigorously validated. The RCT is utilized to provide a clinically relevant and realistic simulation of calcification growth in bicuspid aortic valves. To assess the impact of calcification distribution on valve biomechanics and transcatheter aortic valve implantation (TAVI) outcomes, finite element analyses are conducted by integrating RCT with a group-specific calcification modeling technique. By dividing the bicuspid aortic valve calcification into regional calcification, precise control over calcification distribution is achieved by manipulating regional calcification growth stages. Multiple valve calcification distributions are simulated with critical parameters, including pre-and post-TAVI valve area, maximal stresses on the valve, and anchoring forces. The extended RCT method is quantitative and capable of predicting the total volume growth of different TAV and BAV patents (n=14) with an average error of 15% from multiple CT over a maximum time interval of 5 years. Combining RCT in BAV to perform TAVI simulations at different calcification stages can serve in the patient-specific design of future repair therapy. This study advances our understanding of calcified bicuspid aortic valves and offers valuable insights for optimizing TAVI procedures.

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

 

תכנית ההתמחויות של גוגל ישראל

01 במאי 2023, 8:00 
 
Google internship

תכנית התמחויות של גוגל

Hardware/Electrical Engineering Intern, 2023

Apply

Please complete your application before May 31st 2023. We encourage you to apply as early as possible as we review applications on a rolling basis.

To start the application process, you will need an updated CV or resume and a current unofficial or official transcript in English. Click on the “Apply” button on this page and provide the required materials in the appropriate sections (PDFs preferred):

  • 1. In the “Resume Section:” attach an updated CV or resume.
  • 2. In the “Education Section:” attach a current or recent unofficial or official transcript in English.
    • Under “Degree Status,” select “Now attending” to upload a transcript.

This internship is intended for students who can start in summer 2023, although the specific start date and duration is flexible. Participation in the internship programme requires that you are located in Israel for the duration of the internship programme.

Note: By applying to this position you will have an opportunity to share your preferred working location from the following: Tel Aviv, Israel; Haifa, Israel.

Qualifications

Minimum qualifications:

  • Currently pursuing a Bachelor's degree in Electrical Engineering, Computer Engineering or a related technical field.
  • Ability to speak and write in English fluently.

Preferred qualifications:

  • Currently enrolled in a full time degree program.
  • Internship work, work experience, or personal project experience in Hardware or Electrical Engineering.
  •  Experience writing code in one or more languages (e.g., C, C++, or Python).

About the job

As an Electrical Engineering Intern in the domain of VLSI (Very Large-Scale Integration) you will work on designing, developing and verifying next generation chips for Google’s Cloud Compute Infrastructure. You will have the opportunity to collaborate with engineers from various parts of the org to help develop Google’s next generation SOC (systems on chip).

Google Cloud accelerates organizations’ ability to digitally transform their business with the best infrastructure, platform, industry solutions and expertise. We deliver enterprise-grade solutions that leverage Google’s cutting-edge technology – all on the cleanest cloud in the industry. Customers in more than 200 countries and territories turn to Google Cloud as their trusted partner to enable growth and solve their most critical business problems.

Responsibilities

  • Responsibilities vary based on specific teams.

 

ההרשמה לתכנית התמחויות של גוגל ישראל נפתחה ותסתיים ב31.05!

התכנית מיועדת לסטודנטים.ות להנדסת חשמל ותוכנה בלבד.

כדי להיות זכאים.ות להגיש מועמדות, על המועמדים.ות:

  1. ללמוד השנה לתואר ראשון בהנדסת חשמל ותוכנה. 
  2. יכולת דיבור וכתיבה באנגלית באופן שוטף.

כישורים חשובים נוספים:

  1. רשומים.ות כעת לתכנית לתואר במשרה מלאה.
  2. עבודת התמחות, ניסיון בעבודה או ניסיון אישי בפרויקט בהנדסת חומרה או חשמל.
  3.   ניסיון בכתיבת קוד בשפה אחת או יותר (למשל, C, C++ או Python).

כמתמחה בהנדסת חשמל בתחום VLSI (Very Large-Scale Integration) תעסקו בתכנון, פיתוח ואימות שבבים מהדור הבא עבור תשתית מחשוב הענן של גוגל. תהיה לכם.ן הזדמנות לשתף פעולה עם מהנדסים.ות מחלקים שונים של הארגון כדי לעזור בפיתוח הדור הבא של Google SOC (מערכות על שבב).

להרשמה

בהצלחה!

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>