Encoding Facial Behavior in Videos for Identification Purposes- סמינר מחלקה פיסיקלית

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

03 בספטמבר 2023, 10:00 
Kitot Building, Room 011  
 Encoding Facial Behavior in Videos for Identification Purposes- סמינר מחלקה פיסיקלית

 

 

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

 

You are invited to attend a lecture on 3rd September 2023 at 10:00

 

Kitot Building, Room 011

 

Join Zoom Meeting

https://tau-ac-il.zoom.us/j/6690388255

 

Encoding Facial Behavior in Videos for Identification Purposes

 

By:

Mor-Avi Azulay

 

MSc student under the supervision of Prof. David Mendlovic and Dr. Dan Raviv

 

Abstract

 

Facial appearance-based methods have settled as state-of-the-art approaches for the task of human re-identification. However, the captured appearance can change greatly under different environmental conditions or cameras. Most methods base their identification upon static data, i.e., one or more representations of single frames. Hence, dynamic data such as temporal changes which convey meaningful identity-unique information, i.e., facial motion patterns, are omitted.

The research conducted in this thesis focuses on a novel approach to extract facial behavior characteristics from a video and encode it into a light representation we call Motion-model, which acts as a dictionary of the typical behavior for different expression-based states, or states transition, within a high-dimensional embedding space, and can naturally modeled as a graph. We further present MotionDNANet, a deep graph-based neural network with a dedicated architecture that learns a layer-specific graph adjacency matrix, to process Motion-models for identification purposes.

Experimental results over the large-scale VoxCeleb2 dataset, show that our facial behavior-based method offers a better user experience in highly secured systems that require a low false acceptance rate (FAR) where the true acceptance rate (TAR) drops dramatically for other tested methods. I.e., our TAR at FAR=0.1% is 87.48% and all others are below 15%. Moreover, results over the VideoForensicsHQ dataset show that our Motion-model concept can help detect false identifications in the case of DeepFake videos.

מהדקה ה-47:50

 

 

 

מחקר שבוצע על ידי חוקר יזמות מבית הספר למינהל עסקים בסטנפורד מעלה כי בוגריה של אוניברסיטת תל אביב הם בין המייסדים של 43 סטארט-אפים בשווי של מיליארד דולר ויותר

סמינר מחלקה של פרופ' אור גנדלמן

29 בנובמבר 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של פרופ' אור גנדלמן

פרטים יפורסמו בהמשך

סמינר מחלקה של אור בנסון - ניתוח השפעה במהירות נמוכה של חומרים מרוכבים למינציה: מיקרו-מכניקה לא ליניארית רב-קנה מידה ורשתות נוירונים פונדקאיות

27 בנובמבר 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של אור בנסון - ניתוח השפעה במהירות נמוכה של חומרים מרוכבים למינציה: מיקרו-מכניקה לא ליניארית רב-קנה מידה ורשתות נוירונים פונדקאיות

 

School of Mechanical Engineering Seminar
Monday November 27.11.2023

Wolfson Building of Mechanical Engineering, Room 206

 

Low-Velocity Impact Analysis of Laminated Composites:  Multi-Scale Nonlinear Micromechanics and Surrogate Neural Networks
 

 

Or Benson

 

M.Sc. research under the supervision of Prof. Rami Haj-Ali Tel-Aviv University, Department of Mechanical Engineering

 

Low-velocity Impact (LVI) of laminated composite structures can lead to severe growing hidden damage states.  This study introduces a new multi-scale framework for the mechanical progressive damage analysis of laminated composite structures during and post-LVI.  The central hypothesis is that refined nonlinear micromechanical models can be integrated into concurrent progressive damage analysis and yield good prediction ability compared to present macro-damage homogenized anisotropic theories.  To this end, we demonstrate that the Parametric High Fidelity Generalized Method of Cells (PHFGMC) can provide refined predictive nonlinear micromechanical behavior of unidirectional and woven laminates.  The PHFGMC can solve for both the local and overall nonlinear and damage responses in heterogeneous multiphase composites.  Implementation of PHFGMC involves imposing periodicity conditions within a repeating unit cell (RUC), divided into subcells representing distinct fiber and matrix phases.  Maintaining continuity in average traction and displacement across these subcells ensures equilibrium, enhancing computational efficiency compared to conventional Finite-element (FE) methods.

 

Massive computational effort is needed to integrate the progressive-damage PHFGMC model in multi-scale LVI analysis of laminated structures.  This multiscale refined framework will require repeated computations for the RUC responses at thousands (and often more) integration points at all time increments.   In order to avoid the massive (if not possible) computational effort, a new AI-ANN approach is introduced whereby different ANN classes are trained off-line for different nonlinear PHFGMC simulations for one RUC under different discrete potential mechanical stress-strain and histories or loading paths.  The trained ANNs are examined in their ability to accurately predict the PHFGMC responses for cases not preview-to during the training.  Incorporating the trained PHFGMC-ANN surrogate micromechanics is then used for the LVI simulations to allow for accurate predictions of local and global responses and to navigate the complex damage modes of the material that develop during impact events.

 

The IM7/972 and M21 laminated and woven carbon/epoxy composite material systems are considered as these are two common advanced composites currently employed in aerospace structures.  An extensive overview of the material system is provided, introducing PHFGMC-ANN in modeling nonlinear behavior and damage.  The seminar will discuss different selections of ANN models and their architecture.  The research introduces the application of Long Short-Term Memory (LSTM) ANNs trained by the PHFGMC for composite material modeling.  A foundational understanding of LSTM is provided, outlining its seamless integration process, encompassing data collection, sequence encoding, LSTM architecture, training, prediction, and analysis.  The thesis emphasizes the benefits of this innovative integration approach and how it can be further expanded and implemented in multi-scale analysis.

 

https://tau-ac-il.zoom.us/j/86497933118

 

סמינר מחלקה של נועה בילטמן - מאפיינים מכניים של חומרים מרוכבים קרמיים C/C-SiC: מחקר חישובי וניסיוני

27 בנובמבר 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של נועה בילטמן - מאפיינים מכניים של חומרים מרוכבים קרמיים C/C-SiC: מחקר חישובי וניסיוני

 

School of Mechanical Engineering Seminar
Monday November 27.11.2023

Wolfson Building of Mechanical Engineering,room 206

 

Mechanical Properties of C/C-SiC Ceramic Composites :

A Computational and Experimental Study
 

 

Noa Blitman

 

M.Sc. research under the supervision of Prof. Rami Haj-Ali Tel-Aviv University, Department of Mechanical Engineering

 

Advanced Ceramic Matrix Composites (CMCs) are being developed for their exceptional durability in high-temperature environments, making them crucial in aerospace and various other applications. This study focuses on a specific CMC material system composed of pyrolyzed 8-harness phenolic carbon-matrix composites, manufactured using the Liquid Silicon Infiltration (LSI) process.

 

The initial segment of this seminar is dedicated to predicting mechanical properties. Utilizing advanced CT scans and applying the Parametric High Fidelity Generalized Method of Cells (PHFGMC) micro-mechanical model, a refined Repeating Unit Cell (RUC) is achieved. The proposed PHFGMC demonstrates its capability to provide predictive local responses and equivalent properties. Additionally, this study introduces two reduction algorithms aimed at enhancing computational efficiency.

 

The experimental part of the study outlines three mechanical tests employed to determine certain orthotropic material properties, namely 4-point bending, v-notch shear, and short beam shear. The results from these tests are compared with the predictions from the PHFGMC model. It is demonstrated that the proposed model effectively captures the material behavior, which holds promise for future applications in the design and manufacturing of other CMC material systems.

 

 

https://tau-ac-il.zoom.us/j/86497933118

 

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>