Mixed Mode Fracture Behavior of a Multi-Directional Plain Weave Composite - an Interface Delamination Between a 0◦/90◦ and a +45◦/-45◦ Weave

17 ביוני 2020, 14:00 - 15:00 
בניין וולפסון 06  
Mixed Mode Fracture Behavior of a Multi-Directional Plain Weave Composite - an Interface Delamination Between a 0◦/90◦ and a +45◦/-45◦ Weave

~~

PhD "ZOOM" SEMINAR
Wednesday, June 17, 2020 at 14:00
Mixed Mode Fracture Behavior of a Multi-Directional Plain Weave Composite - an Interface Delamination Between a 0◦/90◦ and a +45◦/-45◦ Weave
Orly Dolev
Ph.D. candidate under the supervision of Professor Leslie Banks-Sills

Currently, the advantages of composite materials, such as high strength and toughness to weight ratios, corrosion and fatigue resistance, make these materials very desirable to work with, especially in the aerostructure industry. However, composite structures are sensitive to the presence of damage such as delamination, which is one of the most typical failure modes in laminate composites. The main problem is that most of composite structural damage is difficult to detect or follow. The lack of accurate and reliable fracture toughness, fatigue and damage tolerance properties, which enable the evaluation of damage growth within a structure, results in an over-designed structure due to the high safety margin regulations. In order to better understand the mixed mode I/II fracture (initiation and propagation) behavior of a carbon/epoxy multi-directional (MD) woven composite containing a delamination between two plain woven plies, with tows in the 0◦/90◦ and +45◦/-45◦ directions, a comprehensive investigation has been performed, involving analytical, numerical and experimental work.
Mixed-mode fracture toughness tests were carried out on an MD laminate making use of the Brazilian disk (BD) specimen, containing a delamination, at various loading angles in order to obtain a wide range of mode mixities. Employing the experimentally and numerically obtained results at fracture, a two and three-dimensional failure criterion were generated. A statistical analysis with a 10% probability of unexpected failure and a 95% confidence was performed, in order to account for scatter in the results. These failure criteria may be used for safer design purposes for the investigated interface.
Fracture toughness tests for delamination initiation and propagation under quasi-static loading were carried out making use of three beam-type specimens: double cantilever beam (DCB), calibrated end-loaded split (C-ELS) and mixed mode end-loaded split (MMELS), with the following modes of deformation: nearly mode I, nearly mode II and one in-plane mixed mode ratio, respectively. Based upon the experimentally and numerically obtained results, a fracture toughness resistance G_iR-curve was generated, for each kind of beam-type specimen. In addition, the critical values of the interface energy release rate for initiation G_ic and steady-state propagation G_iss were determined.
Quantification of the critical energy release rate G_ic values obtained for delamination initiation in all tested specimens, as a function of the in-plane mode mixity, was presented and discussed.

Join Zoom Meeting
https://zoom.us/j/4962025174
The meeting will be recorded and made available on the School’s site.

ד״ר עלית אופנהיים מנהלת מכון שלמה שמלצר לתחבורה חכמה באוניברסיטת תל אביב

03 מאי 2020
איך תראה מהפכת התחבורה החכמה ביום שאחרי הקורונה?

מכון שלמה שמלצר לתחבורה חכמה, מעלה תהיות ויפעל לקידום מחקרים יישומיים שיעסקו בשאלות מחקר כגון האם נאמץ תרבות ארגונית של עבודה מהבית? האם נוותר על הרכב הפרטי ונשתמש בתחבורה ציבורית? מה יעלה בגורל התחבורה השיתופית? 

 כל זאת ועוד ניתן לקרוא כאן

EE ZOOM Seminar: EEG Source Localization Using Compressed Measurements and the Fabrication of an Anisotropic Phantom Head Model

06 במאי 2020, 15:00 
ZOOM  

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז.  בצ'אט

Join Zoom Meeting
https://us04web.zoom.us/j/79530182251
Meeting ID: 795 3018 2251

Speaker: Tal Mund

M.Sc. student under the supervision of Prof. Alex Bronstein

 

Wednesday, May 6th, 2020 at 15:00

        ZOOM  Seminar

 

EEG Source Localization Using Compressed Measurements and the Fabrication of an Anisotropic Phantom Head Model

Abstract

One of the greatest challenges of modern-day science community is understanding how our brain functions. In a human head, a neural activity is usually modeled as a current dipole activation with a specific position and orientation. Brain imaging techniques such as EEG, MEG, fMRI etc. are used to evaluate the neural activities location, orientation and magnitude. One can study the spatiotemporal behavior of the head’s neural circuits using these techniques. However, for us to better understand how our brain works, we need to collect a vast amount of data. One of the main advantages of EEG is its portability, since competing imaging techniques such as fMRI and MEG are stationary. A mobile EEG device can continually collect data from research subjects as they perform their everyday tasks. By compressing the EEG measurements, the hardware requirement of a portable EEG device is reduced, which in turn makes it cheaper and lighter. Hence getting closer to a portable EEG device. In this work, the possibility of using a compressed set of EEG measurements was simulated and analyzed. In addition, a phantom mimicking the electromagnetic properties of the human head is presented. A phantom head is considered an essential validation step between computer simulations and the data processing of EEG recordings on humans. The fabrication is based on 3d-printing technology combined with an electrically conductive gel. The novel key features of the phantom are the controllable anisotropic electrical conductivity of the skull and the densely packed monopolar current sources permitting interpolation of the measured gain function to any dipolar current source position and orientation within the head.

 

EE Seminar: Using artificial neural networks for Echo-based object classification & reconstruction

04 במאי 2020, 15:00 
 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז.  בצ'אט

Join Zoom Meeting
https://zoom.us/j/95381960872?pwd=bEVvNjYxOUNNRzN3Q20vWHY4SENTdz09
Meeting ID: 953 8196 0872
Password: 012254

Speaker: Netanel Frank

M.Sc. student under the supervision of Prof. Anthony Weiss and Prof. Yossi Yovel

 

Monday, May 4th, 2020 at 15:00

         ZOOM

 

Using artificial neural networks for Echo-based object classification & reconstruction

Abstract

Our understanding of sonar-based sensing is very limited in comparison to light based imaging. In this work, we synthesize a ShapeNet variant in which echolocation replaces the role of vision. A new hypernetwork method is presented for 3D reconstruction from a single echolocation view. The success of the method demonstrates the ability to reconstruct a 3D shape from bat-like sonar, and not just obtain the relative position of the bat with respect to obstacles. In addition, it is shown that integrating information from multiple orientations around the same view point helps performance.

The sonar-based method we develop is analog to the state-of-the-art single image reconstruction method, which allows us to directly compare the two imaging modalities. Based on this analysis, we learn that while 3D can be reliably reconstructed form sonar, as far as the current technology shows, the accuracy is lower than the one obtained based on vision, that the performance in sonar and in vision are highly correlated, that both modalities favor shapes that are not round, and that while the current vision method is able to better reconstruct the 3D shape, its advantage with respect to estimating the normal's direction is much lower.

 

EE ZOOM Seminar: HIGH POWER DYNAMIC STRUCTURED LIGHT 3D RECONSTRUCTION SYSTEM BASED ON RESONANCE DOMAIN DIFFRACTIVE OPTICS

30 באפריל 2020, 15:00 
 

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני, למי שמתחבר לסמינר דרך הזום.

 

 

You are invited to attend a lecture On Thursday, 30 April 2020, 15:00

 

Join Zoom Meeting
https://us04web.zoom.us/j/73978006567

 

 

HIGH POWER DYNAMIC STRUCTURED LIGHT 3D RECONSTRUCTION SYSTEM BASED ON RESONANCE DOMAIN DIFFRACTIVE OPTICS

 

By:

Omer Stein

 

M.Sc student under  the supervision of Prof. Michael Golub,

Prof. Menachem Nathan, Prof. Shlomo Ruschin

 

 

Abstract

 

Structured light is one of the most common 3D data acquisition technique used in industry. Traditionally, structured light methods are used to obtain 3D information of an object, using predetermined illumination patterns to encode spatial data for later triangulation and reconstruction. A multitude of pattern types exist, which achieve varying degrees of depth resolution, depending on the needs of the user and the demand on the system. Means of projecting these patterns vary as well, including off the shelf DLP projectors, scanning mirror laser projectors and diffractive optics based laser projectors. Diffractive optics based projectors are one of the most cost effective and power efficient options, but are limited in projection angles. Traditional DLP or scanning mirror projectors can have high angles of projection, but can be very large and power consuming, lack illumination power, or present an eye safety hazard. In this work, we show the feasibility of a gray coded structured light 3D reconstruction system, based on resonance domain diffractive optical elements previously developed by our group, which allow for wide fanout angles with very high diffraction efficiency and close to diffraction-limited fidelity of the projected intensity patterns, leading to a compact, low cost, high preforming 3D reconstruction system. We present the design, characteristics, simulation and experimental results of our proposed setup, using real world objects, and compare our results with comparable commercially available projectors.

 

 

Biomechanical Numerical Simulations of Calcific Aortic Valve Disease in Bicuspid Valves: New Biomechanical Modeling for Treatment Planning

22 ביוני 2020, 14:00 - 15:00 
בניין וולפסון 206  
0
Biomechanical Numerical Simulations of Calcific Aortic Valve Disease in Bicuspid Valves: New Biomechanical Modeling for Treatment Planning

~~

"ZOOM" SEMINAR
Monday, June 22, 2020 at 14:00
Biomechanical Numerical Simulations of Calcific Aortic Valve Disease in Bicuspid Valves: New Biomechanical Modeling for Treatment Planning

Karin Lavon
Under the supervision of Prof. Rami Haj-Ali and Prof. Ehud Raanani
School of Mechanical Engineering, Tel Aviv University, Tel Aviv, Israel
 karinlav@mail.tau.ac.il

Bicuspid aortic valve (BAV) is the most common type of congenital heart disease, occurring in 0.5-2% of the population, where the aortic valve has only two leaflets rather than the normal three. Calcific aortic valve disease (CAVD) is characterized in stiffened valve leaflets, which rapidly leads to aortic stenosis (AS). BAV patients constitute more than half the patients diagnosed with CAVD, which progresses rapidly compared to tricuspid aortic valves. Transcatheter aortic valve replacement (TAVR) is a treatment approach for CAVD where a stent with mounted bioprosthetic valve is deployed on the stenotic valve. Performing TAVR in calcified BAV patients has been only recently performed off-label, and raise concerns stemming from the asymmetrical structure of the BAV, which can cause partial anchoring and paravalvular leakage (PVL). This research aims to develop and utilize a new and refined numerical finite-element simulations for investigating the development of calcification in BAVs, and examine potential minimal invasive treatment approaches for those patients, such as balloon aortic valvuloplasty and TAVR deployment.
The clinical part of this study introduces a new Reverse Calcification Technique (RCT) that generates spatial calcified densities from computed tomography (CT) scans of pre-intervention AS patients, and capable of predicting the CAVD progression that leads to the current stage. The different calcification patterns of BAVs were characterized based on acquired CT scans of calcified BAV patients, taken from Sheba and Rabin medical centers. The CAVD patterns were compared to previous disease stages revealed by the RCT and compared to selected patients underwent more than one CT procedure in their past. Fluid–structure interaction (FSI) simulations were employed on calcified BAV models representing four stages of the disease, in order to investigate the contribution of hemodynamics to the calcification development.
A calcification fragmentation biomechanical model is introduced to study the balloon-valvuloplasty procedure aimed at expanding AV root and increase compliance. Towards that goal, six stenotic BAVs with varied calcification patterns were modeled by embedding their calcium deposits inside a parametric model of the BAV. The calcification fragmentation was modeled by deploying a balloon catheter inside the calcified valves, and applying a failure criterion for the calcium medium. The cracking patterns were found to be correlated to the RCT and calcification development patterns, suggesting a relation between the two. The deployments of self and balloon-expandable TAVR devices Join Zoom Meeting
inside a calcified BAV were simulated as well (Evolut and Sapien 3 devices, respectively). Their PVL was also calculated by CFD simulations. The Evolut stent was characterized in asymmetric and elliptic deployment, with lower anchoring forces compared with the Sapien 3. The Sapien 3 and Evolut PRO had comparable PVL values, reduced in half compared with the Evolut R.
The proposed clinical and biomechanical computational models in our study are shown to be effective towards future BAV patient-specific simulations to improve future treatment.

~~https://zoom.us/j/96584758181?pwd=WC9PMXdsYzJ3NFdEN2Q5ZUtOZEVjdz09
The meeting will be recorded and made available on the School’s site.

 

יום פתוח אונליין לתואר ראשון בהנדסה ביו-רפואית

הזמנה ל ZOOM תשלח בקרוב

14 במאי 2020, 17:00 - 19:00 
ZOOM  
יום פתוח אונליין לתואר ראשון בהנדסה ביו-רפואית
אם אתם רוצים להיות חלק מהמהפכה הבאה, אתם שייכים לכאן. הצטרפו לאלו שכבר נרשמו לתוכניות התואר הראשון בהנדסה ביו-רפואית. בואו לחקור ולהעמיק בנושאים מרתקים כמו: מדעי המידע בשירות הרפואה (כולל ביג-דאטה ולמידה עמוקה), תכנון והנדסת מערכות, מדעי המוח ועוד.
 
מתי?
יום חמישי, 14.5.2020
 
מה בתוכנית?
17:00-17:30 מדוע כדאי ללמוד הנדסה ביו-רפואית? ראש המחלקה, פרופ' אורי נבו
17:30-17:40 מסלולי לימוד ייחודיים בהנדסה ביו רפואית
17:40-18:10 חשיפה למחקרים במחלקה - הרצאות קצרות מאת חברי סגל המחלקה
18:10-18:40 סשן מיוחד בנושא וירוס הקורונה - חברי סגל המחלקה
18:40-19:00 פאנל סטודנטים ושאלות ותשובות
***לינק למפגש ZOOM ישלח בקרוב

פיתוח מדריך לאפליקציית וואטסאפ במגוון שפות בעל התאמה לצרכים למגזר השלישי

26 אפריל 2020
פיתוח מדריך לאפליקצית וואטסאפ במגוון שפות בעל התאמה לצרכים למגזר השלישי

משבר הקורונה הוביל את אזרחי העולם לבידוד ביתי וריחוק משפחתי וחברתי, מה שהביא לעלייה בשימוש הכלים הדיגיטליים כגון zoom ו - WhatsApp אך ישנו ציבור שלם במגזר הגיל השלישי שהמעבר לזירה הטכנולוגית לא בא לו בקלות. הפקולטה להנדסה התגייסה למציאת פתרון שיתן מענה לצרכי הגיל השלישי ותחושת חיבור לחברה.

 

סגל הפקולטה להנדסה באוניברסיטת תל אביב בשיתוף סטודנטים וסטודנטיות מבית הספר להנדסה מכנית והמחלקה להנדסה ביו- רפואית החליטו לנסות למצוא פתרון יצרתי כדי להקל על האוכלוסייה הקשישה אשר נמצאת בקשיים מאוד חזקים עקב משבר הקורונה: "מדריך לאפליקצית וואטסאפ במגוון שפות". מדריך קליל זה נבחן ע״י גורמים שונים תוך התייעצות עם הסגל לפסיכלוגיה קלינית באוניברסיטת תל אביב במטרה להבטיח התאמה לצרכי המבוגרים. "הגענו למסקנה שצריך ליצור את תחושת הביחד אצל אוכלוסיית הקשישים, שמרגישה מאוד בודדה" מסביר אור בנסון, סטודנט להנדסה מכנית.

בתמונה מימין לשמאל: בל קריגר, סטודנטית שנה שלישית להנדסה ביו-רפואית ואור בנסון, סטודנט שנה שלישית להנדסה מכנית

 

מה ניתן למצוא במדריך?

בהדרכה רוכזו את כל הנושאים הכי רלוונטיים כדי ליצור הבנה מיטבית אצל אוכלוסייה זו, שלפעמים בחלקה מתקשה מאוד בטכנולוגיה. ניתן למצוא בחוברת ההדרכה הסברים פשוטים כגון:

  • איך מורידים את אפליקציית ה - WhatsApp 
  • איך לפתוח קבוצה עם המשפחה או חבריהם 
  • כיצד לקיים שיחות ווידיאו
  • מה המשמעות של כל כפתור המופיע באפליקציה
  • כיצד להגדיל את הכתב ועוד כמה פיצ'רים נחמדים.

 

המצגות תורגמו למספר שפות: אנגלית, רוסית, ערבית וצפרתית. כאשר לכולם יש גישה נוחה.

 

הצוות היזמי

  • אור בנסון - סטודנט שנה שלישית להנדסה מכנית
  • בל קריגר - סטודנטית שנה שלישית להנדסה ביו-רפואית 
  • שירה אברמוביץ- הנדסה ביו-רפואית סטודנטית שנה שלישית
  • פרופ' רן גלעד-בכרך - הנדסה ביו-רפואית.
  • פרופ' ראמי חג'-עלי - ראש בית הספר להנדסה מכנית
  • פרופ' גל שפס - בית הספר למדעי הפסיכולוגיה

 

תודה לכל השותפים הנוספים שעזרו בפרויקט:

  • הודיה אביטבול- הנדסה ביו-רפואית סטודנטית שנה שלישית

  • ג'ואנה גולדנברג- הנדסה מכנית סטודנטית  שנה שלישית

  • רבקה טובמן - מדעי המחשב 

  • איליה ברסלבסקי הנדסה ביו-רפואית סטודנט שנה שלישית

  • ד"ר דלית קן-דרור פלדמן - מנחה משפטית, הקליניקה למשפט לטכנולוגיה ולסייבר - הפקולטה למשפטים, אוניברסיטת חיפה

 

לינק למדריך

https://www.whatsapptutorial.com/

למעוניינים להתנדב לפרויקט ניתן ליצור קשר עם אור בנסון במייל: orbenson@gmail.com

Microknot optical resonators and their applications

24 ביוני 2020, 14:00 - 15:00 
בניין וולפסון 206  
Microknot optical resonators and their applications

~~

PhD "ZOOM" SEMINAR
Wednesday, June 24, 2020 at 14:00
Microknot optical resonators and their applications
Alexandra Blank
PhD of Dr. Yoav Linzon
Resonating microstructures defined locally on optical fiber tapers are an attractive venue for researchers in the recent years. These engineered microstructures find use in various applications, including photonic filters, lasers, optomechanical light-matter interaction devices, and various sensing elements mimicking human smell and taste sensing system (gas and liquids sensors), known as electronic noses and electronic tongues.
The presented work is devoted to experimental and numerical investigations of the behaviour of microknot resonators (MKRs) defined locally on optical fiber tapers as a promising platform for gas and liquid sensing applications. We demonstrate the two-probe localized heating technique for MKR fusing intended for improving its optical performance and mechanical stability in size and circular profile. We show that an above-threefold dynamical range enhancement has been consistently achieved. The fused MKRs are found to maintain phase stability, as opposed to the unfused knots exhibiting a random phase drift. We prove that e-fusing improves the mechanical strength in the MKR, providing it with transferability that is of importance in sensing applications.
We investigate fused MKRs’ characteristics for in-liquid sensing both local, where the analyte is delivered to the packaged device and the remote sensing. We have suggested and demonstrated two deployment schemes, namely, folded configuration intended for remote sensing, and straight configuration on either hydrophilic or hydrophobic substrate intended for packaged integration of photonic sensors. We found that in folded configuration reversibility remained sustainable over approximately 50 cycles of operation, whereas in most cases of the straight configuration on glass substrate transmission drops to the noise level after a few dewetting cycles. We show that a hydrophobic PDMS substrate can be advantageous relating to surface chemistry as compared to a typical hydrophilic glass substrate. For all those configurations we demonstrated their persistent sensing capabilities and defined unique recognition plots in principle components space specific to pure and diluted volatile liquids tested.
We demonstrate a durable and simple humidity sensing approach based on index-sensitive interference spectroscopy of surface stress birefringence and incorporating tapered microfibers on a silicon substrate coated with an active polymer layer. We show theoretically that the transmission spectrum of coated tapers possess interference patterns induced by the stress applied to the taper due to the coating weight load. The coated device demonstrated persistent detection capability in humid environment and a linear response to calibrated analytes. For each volatile organic analyte tested we defined a calibration plot in principal component space.
Microstructured tapers, when untreated, amenable to low performance in terms of resonance depth (dynamical range), Q and mechanical fragility. In this work we performed a novel comprehensive numerical study of the photonic transmission in manually prepared microknot resonators with different contact coupling area geometries and refractive index variations. Using selective modifications of the MKR coupling area and index profile, the transmission characteristics were studied, and a recipe for the experimental realization of high quality-factor resonators is prescribed.
We present results of the numerical study of the photonic transmission in 3D resonating microstructures defined on optical tapered fibers as functions of both radius and doping and deduce their sensitivities to localized refractive index variations in terms of resonance shifts. Based on the analysis of the transmission characteristics of polymer-coated microstructures, we demonstrated a linear response to the refractive index gradient in NIR wavelength range.
We envision that simple and robust devices with improved optical and mechanical characteristics will be harbored in next generation sensors, as well as optomechanical applications incorporating microfiber-based resonating structures.
Join Zoom Meeting
https://zoom.us/j/4962025174
The meeting will be recorded and made available on the School’s site.

 

 

Graph Theoretical and Geometrical Investigation of Kinematics and Singularity of 3D Parallel Mechanisms: Michael Slavutin

06 במאי 2020, 14:00 - 15:00 
בניין וולפסון 206  
0
Graph Theoretical and Geometrical Investigation of Kinematics and Singularity of 3D Parallel Mechanisms: Michael Slavutin

~~

SCHOOL OF MECHANICAL ENGINEERING SEMINAR
Monday, March 23, 2020 at 14:00 
Wolfson Building of Mechanical Engineering, Room 206
Graph Theoretical and Geometrical Investigation of Kinematics and Singularity of 3D Parallel Mechanisms

Michael Slavutin
PhD Yoram Reich

This work presents geometrical and graph theoretical methods for analysis of mechanisms in three dimensions. In particular, the singularity analysis by geometric methods of parallel mechanisms is presented. The singularity of the most common three-dimensional mechanism, the 6/6 Stewart platform is fully analyzed. The Aronhold-Kennedy theorem is used for this analysis. This analysis is based on the properties of the reciprocal product of two screws, which depends only on the relative position of the two screws. First, the singularity criterion is developed assuming that there exist two lines that cross four of the six legs of the platform. The instantaneous screw axis and the forces in the legs are found. Next, the above assumption is relaxed and the singularity criterion is developed in a most general configuration. For this purpose, the two degrees-of-freedom mechanism obtained by removal of two legs of the platform is analyzed. The line that is a locus of all possible instantaneous screw axes of such mechanism is found. It is proved that the mechanism is singular if three loci of the instantaneous screw axes of three such sub-mechanisms share a common perpendicular. This criterion is expanded to a general parallel mechanism. Examples of analyzing complex mechanisms with this criterion are shown.
The analysis of singularity of a multi-platform parallel mechanism is performed by building an equivalent simpler mechanism using the reciprocality relation. The two-platform and single- and two-circuit three-platform mechanisms are reduced to a single-platform mechanism. It is shown that the three-circuit three-platform mechanisms are irreducible except for certain cases. This method is shown to be applicable to even more complex mechanisms.
The method used for analysis of the singularity of the multi-platform mechanisms is developed formally into a graph-theoretical duality that is used for kinematic and static investigation of a mechanical system. In this duality, a node of the dual graph that corresponds to a platform of a dual mechanism is placed in a face of a graph of the original mechanism. Edges of the dual graph that correspond to the constraints of the dual mechanism cross the edges of the primal graph and are built so that the dual edge is reciprocal to any primal edge crossed by it. The algorithms for determining the geometry of the dual edges are developed in the first part of this work. Since these graphs are multigraphs, there are various possibilities of building the dual graph. Therefore, the building of dual to a dual graph results in a graph that may be different from the original one. This allows simplification of the original mechanism by successful application of the dual operation, preserving the kinematic and static properties of the original systems.

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>