EE Seminar: On Expressiveness and Optimization in Deep Learning

24 בדצמבר 2018, 15:00 
חדר 011, בניין כיתות-חשמל  

 (The talk will be given in English)

 

Speaker:     Dr. Nadav Cohen
                   School of Mathematics, Institute for Advanced Study, Princeton NJ

 

Monday, December 24th, 2018
15:00 - 16:00

Room 011, Kitot Bldg., Faculty of Engineering

 

On Expressiveness and Optimization in Deep Learning

 

Abstract

Understanding deep learning calls for addressing three fundamental questions: expressiveness, optimization and generalization.  Expressiveness refers to the ability of compactly sized deep neural networks to represent functions capable of solving real-world problems.  Optimization concerns the effectiveness of simple gradient-based algorithms in solving non-convex neural network training programs.  Generalization treats the phenomenon of deep learning models not overfitting despite having much more parameters than examples to learn from.  This talk will describe a series of works aimed at unraveling some of the mysteries behind expressiveness and optimization.  I will begin by establishing an equivalence between convolutional and recurrent networks --- the most successful deep learning architectures to date --- and hierarchical tensor decompositions.  The equivalence will be used to answer various questions concerning expressiveness, resulting in new theoretically-backed tools for deep network design.  I will then turn to discuss a recent line of work analyzing optimization of deep linear neural networks.  By studying the trajectories of gradient descent, we will derive the most general guarantee to date for efficient convergence to global minimum of a gradient-based algorithm training a deep network.  Moreover, in stark contrast with conventional wisdom, we will see that sometimes, gradient descent can train a deep linear network faster than a classic linear model.  In other words, depth can accelerate optimization, even without any gain in expressiveness, and despite introducing non-convexity to a formerly convex problem.

 

Works covered in this talk were in collaboration with Amnon Shashua, Sanjeev Arora, Elad Hazan, Or Sharir, Yoav Levine, Noah Golowich, Wei Hu, Ronen Tamari and David Yakira. 

 

Short Bio

Nadav Cohen is a postdoctoral member at the School of Mathematics in the Institute for Advanced Study.  His research focuses on the theoretical and algorithmic foundations of deep learning.  In particular, he is interested in mathematically analyzing aspects of expressiveness, optimization and generalization, with the goal of deriving theoretically founded procedures and algorithms that will improve practical performance.  Nadav earned his PhD at the School of Computer Science and Engineering in the Hebrew University of Jerusalem, under the supervision of Prof. Amnon Shashua. Prior to that, he obtained a BSc in electrical engineering and a BSc in mathematics (both summa cum laude) at the Technion Excellence Program for distinguished undergraduates. For his contributions to the theoretical understanding of deep learning, Nadav received a number of awards, including the Google Doctoral Fellowship in Machine Learning, the Rothschild Postdoctoral Fellowship, and the Zuckerman Postdoctoral Fellowship.

EE Seminar: Re-rendering Reality

17 בדצמבר 2018, 15:00 
חדר 011, בניין כיתות-חשמל  

(The talk will be given in English)

 

Speaker:     Dr. Tali Dekel
                   Google, Cambridge

 

Monday, December 17th, 2018
15:00 - 16:00

Room 011, Kitot Bldg., Faculty of Engineering

 

Re-rendering Reality
 

Abstract

We all capture the world around us through digital data such as images, videos and sound. However, in many cases, we are interested in certain properties of the data that are either not available or difficult to perceive directly from the input signal. My goal is to “Re-render Reality”, i.e., develop algorithms that analyze digital signals and then create a new version of it that allows us to see and hear better. In this talk, I’ll present a variety of methodologies aimed at enhancing the way we perceive our world through modified, re-rendered output. These works combine ideas from signal processing, optimization, computer graphics, and machine learning, and address a wide range of applications. More specifically, I’ll demonstrate how we can automatically reveal subtle geometric imperfection in images, visualize human motion in 3D, and use visual signals to help us separate and mute interference sound in a video. Finally, I'll discuss some of my future directions and work in progress.

Short Bio

Tali is a Senior Research Scientist at Google, Cambridge, developing algorithms at the intersection of computer vision and computer graphics. Before Google, she was a Postdoctoral Associate at the Computer Science and Artificial Intelligence Lab (CSAIL) at MIT, working with Prof. William T. Freeman. Tali completed her Ph.D studies at the school of electrical engineering, Tel-Aviv University, Israel, under the supervision of Prof. Shai Avidan, and Prof. Yael Moses. Her research interests include computational photography, image synthesize, geometry and 3D reconstruction.

EE Seminar: Enhancing Transfer Learning for Pulmonary Nodule Detection using Preprocessing Techniques

19 בדצמבר 2018, 15:30 
חדר 011, בניין כיתות-חשמל  

 

Speaker: Max Fomin

M.Sc. student under the supervision of Prof. Hayit Greenspan

 

Wednesday, December 19th, 2018 at 15:30

Room 011, Kitot Bldg., Faculty of Engineering

 

Enhancing Transfer Learning for Pulmonary Nodule Detection using Preprocessing Techniques

 

One of the biggest challenges today in implementing deep learning systems in the medical world is obtaining sufficiently large datasets that enable training neural networks without overfitting. One notices that the state-of-the-art systems in everyday object detection tasks are trained on huge datasets, in order to achieve their accuracy. In contrast, the medical world, which inherently requires the highest accuracy because of the high cost of errors, suffers from smaller datasets by far, dictating the creation of much simpler neural networks that thus achieve worse results.
Exisiting CAD (Computer Aided Diagnosis) systems for pulmonary nodule detection have two main stages. The first stage is the nodule candidate generation, which aims to produce as many high quality candidates as possible using 2D slices for fast runtimes. The second stage is a false-positive filtering stage, which aims to pass only the candidates that are true nodules. This stage, which operates only on the candidates, and not on the entire slice, can thus work in higher dimensions, i.e. 2/2.5/3 dimensional object classification.

Our work is the introduction of the MiMax Technique, a unique pre-processing method for medical images that improves the transfer learning process from public datasets of everyday images. In order to give a theoretical introduction to this method, we also present the SPCLAHE technique.

The SPCLAHE method is a proven pre-processing method for boosting the analytics of medical images (specifically, malignancy detection in mammographies) using CNNs. A significant advantage of SPCLAHE is that its product is a color image. Eventually, we introduced the MiMax Technique, our novel contribution in this work, presenting the best results. The MiMax Technique essentially fuses together the CLAHE algorithm from the SPCLAHE method with the jet colormap, including the best of all worlds. Running the MiMax Technique resulted in up to 14% improvement in object detection performance, a very impressive result given that we have not changed any parameters in the neural network itself or in its training procedure.

Our work is based on 2D object detection and therefore the aim of its product is to improve the candidate generation stage in these systems. The idea is plugging this method into any existing CAD system, in order to boost its performance, without the need of changing the system itself.

 

EE Seminar: Effectively Optimizing Medical Transfer Learning using Colormaps

19 בדצמבר 2018, 15:00 
חדר 011, בניין כיתות-חשמל  

Speaker: Michael Zolotov

M.Sc. student under the supervision of Prof. Hayit Greenspan

 

Wednesday, December 19th, 2018 at 15:00

Room 011, Kitot Bldg., Faculty of Engineering

 

Effectively Optimizing Medical Transfer Learning using Colormaps

 

Abstract—The medical world is based today on computed tomography (CT) imaging technology to detect pulmonary cancer. This process suffers from countless significant bottlenecks and difficulties: from acute dependence on long and meaningful training for the diagnoses of CT scans, to human errors resulting from fatigue and lack of concentration.

In recent years, there has been a technological breakthrough in machine learning, especially in systems based on deep neural networks. The performance of neural network based systems in detecting and classifying real-world images is state-of-the-art, clearly bypassing the performance of older algorithms.

Transfer learning is key principle for building high performance object detection systems. It is a method where a model which was developed for some task is reused as the starting point for a second task.

Transfer learning is useful as it enables training deep neural networks with comparatively little data. However, because medical images are different from ordinary images, the effect of applying naive transfer learning techniques is far weaker than usual. Therefore, current models that are applied for Computer Aided Diagnosis (CAD) tasks do not reach their full potential.

This work shows that by using colormaps, it is possible to optimize transfer learning for medical images.

Colormaps are used nowadays to find a visually comfortable data representation in 3D colorspace. They are used in this work as a pre-processing technique, for the first time, to the best of our knowledge.

We will show that by using colormaps it is possible to improve the overall detection performance of Deep Learning based systems on medical images, when fine tuning models that have been pretrained on ImageNet, without changing the detection architecture itself.

 

כנס שנתי 2019

25 בפברואר 2018, 12:30 
 
כנס שנתי 2019

School of Mechanical Engineering Prof. Dov Sherman

26 בדצמבר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
School of Mechanical Engineering Prof. Dov Sherman

 

 

 

 

School of Mechanical Engineering Seminar
Monday, March 12, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

When crack meets defects-

Atomistic scale Jog like surface instability

 

Dov Sherman

School of Mechanical Engineering

Tel-Aviv University, Tel-Aviv 69978, Israel

 

 

 

This talk is the second in a series of talks about fracture in the atomistic scale. In the first talk we discussed the interaction between the external driving force and bond breaking mechanisms along the curved crack front. In this talk we will describe and model the interaction between dynamic crack and point (atomistic) defects, and the generated surface instabilities.

Recently, we generalized the interaction in brittle cubic crystals by cleaving silicon and germanium doped with boron, oxygen, phosphorous, and gallium. At certain crack speed and chemical local strain energy induced by the dopant, the crack will deflect to generate an atomistic height wedge like jog (like in dislocations) to diminish the local chemical strain energy. Jogs are pile-up up to initiate a micron scale ridge.

A theoretical model was developed, based on continuum energy minimization law (even in this scale), where the crack speed and the local chemical strain energy play a major role. The model predicts the maximal crack speed at deflection.  The major outcome of the model is that even the densest jogs have only limited influence on crack speed.

 

 

 

 

School of Mechanical Engineering Asaf Prof. Dov Sherman

12 בדצמבר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
School of Mechanical Engineering Asaf Prof. Dov Sherman

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, December 12, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Macro to micro in fracture: From dynamic cleavage energy

to atomistic bond breaking mechanisms

 

Prof. Dov Sherman

School of Mechanical Engineering

Tel-Aviv University, Israel

 

Several fundamental issues in fracture will be discussed: micro to macro correlation, effect of crack speed on fracture properties, and 3D aspects of fracture.

We will show, at first, the existence of a correlation between the macroscopic dynamic cleavage energy and the atomistic bond breaking mechanisms along the crack front. We study this correlation in brittle single crystal, with a variety of driving force, q, the gradient of the energy release rate (ERR), q=dG0/da, which was found to be a crucial variable in fracture.

Dynamic crack propagation in quasi-statically loaded specimens made of brittle silicon crystal were performed using our coefficient of thermal expansion mismatch (CTEM) method. The cleavage energies were evaluated and cracks speed measured for a range of driving forces, q. The experimental energy-speed relationship where compared with Freund equation of motion to extract the varying cleavage energies at initiation and during propagation, denoted here G0 and GDM, respectively. We show that both G0 and GDM are q dependent. Surprisingly, both are independent of crack speed.

An important macroscopic physical occurrence in our specimens is a shallow curvature of the crack front, which indicates on the 3 dimensionality of fracture problems. The only topological explanation to the curvature is that it constructed from atomistic scale planar steps or kinks. The kinks propagate by two major mechanisms; kink advance and kink formation, with distinct energy of propagation.

We suggest that the macroscopic crack front curvature and cleavage energy and the microscopic bond breaking mechanisms and sequence in the atomistic scale depend on the ratio between the number of kink advance to kink formation mechanisms, governed by the macroscopic q; yields the cleavage energy from Griffith barrier of 2gs for low q cracks to lattice trapping effect of over 3gs for cracks running under high q.

 

 

EE Seminar: Efficient Verification in Distributed Systems

12 בדצמבר 2018, 15:00 
חדר 011, בניין כיתות-חשמל  

Speaker: Mor Perry

Ph.D. student under the supervision of Prof. Boaz Patt-Shamir

 

Wednesday, December 12th, 2018 at 15:00
Room 011, Kitot Bldg., Faculty of Engineering

Efficient Verification in Distributed Systems

 

Abstract

 

In every complex system, faults can occur. Detecting faults, in many cases, is the first step in dealing with them. In this work, we focus on efficient detection of faults in distributed systems. A distributed system is a set of interconnected processors. We consider a standard message-passing model of distributed computation, where there is no central control or shared memory, and processors communicate only by sending messages on communication links in synchronous rounds. Distributed verification has received much attention over the years due to its applications to various domains. For example, checking the results obtained from the execution of a distributed program, constructing self-stabilizing algorithms, establishing lower bounds on the time required for distributed approximation, and developing a distributed complexity theory inspired by the sequential complexity theory.

 

In this work, we address the problem of locally verifying global properties of the network, and we study the effect of different network resources and relaxations on the complexity of verification. In particular, we first show that using randomization reduces the communication complexity exponentially. Also, approximations can significantly reduce space and communication complexity. The ability to send a different message on each link is a crucial factor which can greatly reduce the communication complexity of verification as well. Finally, we show that using multiple communication rounds can sometimes reduce space complexity even more than linearly in the number of rounds.

אקדמיה ותעשיה בשיח פתוח לקידום וחיזוק הקשר

02 דצמבר 2018
מפגש בכירים גרסה 2018

השבוע התכנסו בכירי התעשיה הישראלית ומיטבי המוחות מהאקדמיה לשיח פתוח שהתמקד בדרכים להידוק הקשרים בין האקדמיה לתעשייה, הישגים וחדשנות; כמו כן גם אתגרי העתיד שהתעשייה והאקדמיה ניצבות בפניהם והחסמים שמולם הן מתמודדות.

 

הפקולטה להנדסה של אוניברסיטת תל-אביב שוקדת על הידוק הקשר עם התעשיה במסגרת פעילות התכנית לעמיתי התעשיה (IAP) של הפקולטה. המפגש מתקיים כמידי שנתיים שלוש בין מנהלי החברות השייכות לארגון IAP, לבין בכירי האוניברסיטה והפקולטה להנדסה.

 

המפגש השנה היה הגדול מסוגו ונכחו בו יותר מ-30 משתתפים הכוללים את נשיא אוניברסיטת תל-אביב, פרופ' קלפטר, דקאן הפקולטה, פרופ' רוזנוקס, ראשי היחידות של הפקולטה, ובכירים מהתעשיה כגון: אלקנה בן סיני (סגן נשיא באינטל העולמית) אהרון אהרון, (מנכ"ל הרשות לחדשנות), ד"ר שלמה מרקל (סגן נשיא ברודקום העולמית  ויו"ר דירקטוריון רמות), ד"ר ענבל קרייס (סגנית מנהל מפעל החלל IAI), שחר בר אור (מנכ"ל ווסטרן דיגיטל ישראל) ועוד רבים אחרים.

 

במפגשי עבר הועלו הצעות רבות ערך שנלקחו בחשבון ואף מומשו, ביניהן, עדכון קורסי התשתית בפקולטה, תכנית להנדסת מערכות, מתן תשתית להבנה רגולטורית לבוגרי ביו-רפואה, הצורך בפיתוח כלי למידה מרחוק ועוד. השנה, מסרים רבים הועברו בדגש כי אוניברסיטת תל-אביב מובילה בחדשנות ומצליחה לשלב הכשרת אנשי מחקר מעולים עם רלוונטיות לתעשיה בארץ. נוסף לכך, התפתח דיון סוער בעניין עבודת סטודנטים בזמן הלימודים ושילוב מרצים מהתעשיה בתכנית הלימודים. הערה לא פחות חשובה הועלתה בשולחן העגול שעניינה בהקניית כישורי התנהלות של הבוגרים, דבר שמתקשר לתכניות המולטי דיסציפלינריות שהפקולטה השיקה (כגון: הנדסה ורוח).

 

כאמור המפגש אורגן ע"י ארגון עמיתי התעשיה של הפקולטה להנדסה בעזרת הצוות הכולל את הגברת יערית רחמים אברוצקי (מנהלת קשרי תעשיה), הגברת גלית בוצר גלעד (אחראית השיווק הדיגיטלי של הפקולטה להנדסה) והגברת הילה כהנוביץ (מנהלת אדמיניסטרטיבית של התכנית "מדעים להייטק")

 

האקדמיה רואה עצמה כמעיין הידע של העת החדשה. ככזו עליה להביט קדימה, ולשמר את הרלוונטיות לצורכי התעשיה. בשל כך, השיח הפתוח והפורה שאנו דואגים לשמר בין האקדמיה לתעשיה יחזק משמעותית את הקשר וישרת אפוא את כולם מכיוון שזה מסע המשותף של כולנו - אקדמיה ותעשיה.

 

להנאתכם, קישור לתמונות מהכנס

SAE’s Connected and Automated Vehicle Conference Israel

כנס ראשון של ה SAE בארץ  16-17 בינואר 2018

16 בינואר 2019, 8:00 
כפר המכביה  
Connected and Automated Vehicle Conference Israel

הכנס מיועד לכל מי שמתעניין בחדשנות, מחקר ופיתוח בעולם האוטוטק!!

מכון שלמה שמלצר לתחבורה חכמה באוניברסיטת תל אביב בשיתוף עם hashtag#SAE , לוגטל וספוטם מקיימים כנס ראשון של ה SAE בארץ בנושא Connected and Automated Vehicle הכנס יערך ב 16-17 בינואר 2019 בכפר המכביה. הרצאות מרתקות בנושאים הכי בוערים!  אל תחמיצו! 30% הנחה למקדימים להרשם. סטודנטים זכאים ל 50% הנחה!  

להרשמה: http://www.logtel-events.com/icav/index.html#pricingicav

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>