School of Mechanical Engineering Shir Wertheimer and Zaki Yarden

18 ביוני 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Shir Wertheimer and Zaki Yarden

 

 

School of Mechanical Engineering Seminar
Monday, June 18, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

A sublaminate meso-mechanics damage model for low-velocity impact analysis of multi-layered laminates

Yarden Zaki

MSc Student of Prof. Rami Haj-Ali

Low velocity impact (LVI) can induce hidden damage in laminated composite structures.  Thus this is a major risk source that may reduce strength and stiffness and limit serviceability. Wide spread delaminations are frequent outcome of LVI.   Hence, it is essential to develop predictive mechanical models for LVI damage.

 

 In this study, a through-thickness meso-mechanical sublaminate homogenization model is proposed for the damage analysis of composite plates subjected to low-velocity impact (LVI), see Figure-1. The sublaminate model performs through-thickness homogenization using the smallest repeated stack sequence of the multi-layered laminate. In-plane and out-of-plane damage models are introduced and examined for their ability to initiate and propagate progressive damage in the laminate. The sublaminate includes a thin cohesive layer that represents the intra-layer delamination damage mode.  Out-of-plane normal and shear failure criteria are combined to detect cohesive damage. The proposed sublaminate damage framework is implemented as an external user material of theABAQUS/explicit FEA program. LVI analyses of composite plates are performed and the resulted impact damage shapes are compared with test results taken from the literature.  Good prediction ability is shown for impact of multi-layered plates having several repeated stacks through their thickness.

 

 

 

 

Bio-Composites Based on Unique Coral Collagen Fibers towards

Tissue Engineered Blood Vessels

 

Shir Wertheimer

M.Sc. student of Prof. Rami Haj-Ali

 

Cardiovascular Diseases (CVDs), e.g. peripheral arterial diseases, cerebrovascular disease, and particularly coronary artery occlusion, constitute the leading cause of death worldwide. Approximately 31% of all global deaths are caused by CVDs, of which 42% are attributable to coronary artery disease. These are manifested by, inter alia, the mechanical degradation of the blood vessels.  The mechanical strength of the blood vessel is provided primarily by type I collagen fibers which are mainly found in the outer layer of blood vessels, known as the adventitia.

This study introduces a new bio-composite material system consisting of unique and long collagen fibers derived from corals – embedded within an alginate hydrogel matrix. The new bio-composite layers were used to fabricate a graft to be used towards tissue engineered blood vessels.  These constructs consisted of both circumferentially and longitudinally oriented collagen fibers. Mechanical properties of the grafts such as compliance and hoop stress-strain curve were investigated via a new experimental setup constructed in our lab for this purpose, allowing applied internal pressure levels (0-300 mmHg) with measured external deformations using an optical extensometer. Furthermore, numerical finite element simulations of the graft predicted close stiffness values to the measured, especially for relatively high pressure loads.  

Next, a biological biocompatibility study was conducted to examine cell growth within the manufactured composite construct.  Towards that goal, fibroblast cells were seeded within the collagen fibers alone and monitored in order to generate quantitative growth metrics. Subsequently, different bio-composite collagen-reinforced hydrogels were also fabricated and cell-seeded for similar bio-compatibility studies. The cells in all samples used for the biocompatibility tests were alive and well-functioning for more than 28 days.  They demonstrated higher growth rates during the first two weeks, followed by lower yet generally positive growth rates for the following two weeks. The cell orientation was shown to follow that of the collagen fibers for the duration of the experiment.

The novelty of this study is manifested in the use of naturally derived long collagen fibers for the development of a new class of tissue-engineered grafts. The proposed novel bio-composite and associated construct show a great potential for future tissue engineered replacements of blood vessels.

 

 

 

 

 

 

 

 

 

 

 

 

הוראות בבטיחות במעבדות כימיות: לפני שימוש בחומר מסוכן יש לקרוא את גיליון הבטיחות שלו SDS המתייחס למאפייני הסיכון.

מהם אמצעי המיגון וכיצד מגישים עזרה ראשונה.

גיליונות הבטיחות SDS - המוסד לבטיחות ולגיהות

עובדים במעבדה:

1.  מחויבים בהדרכת ריענון בטיחות פעם בשנה.
​2. עובד חדש מחוייב בהדרכת בטיחות לפני תחילת עבודתו ע"י מנהל המעבדה.

מסמכים לעיון:

הנחיות למיון חומרים מסוכנים.

רשימת חומרים כימיים מנטרלים - לשטיפת חירום.

 

EE Seminar: On Learning Theory and Neural Networks

02 במאי 2018, 15:00 
חדר 011, בניין כיתות-חשמל  

 (The talk will be given in English)

 

Speaker:     Dr. Amit Daniely
                     School of Computer Science and Engineering, Hebrew university 

 

Wednesday, May 2nd, 2018
15:00 - 16:00

Room 011, Kitot Bldg., Faculty of Engineering

 

On Learning Theory and Neural Networks

 

Abstract

 

Can learning theory, as we know it today, form a theoretical basis for neural networks? I will try to discuss this question in light of classical and new results

Based on joint work with Roy Frostig, Vineet Gupta and Yoram Singer

 

 

School of Mechanical Engineering Anatoli Hayat

11 ביוני 2018, 14:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Anatoli Hayat

 

 

 

School of Mechanical Engineering Seminar
Monday, June 11, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Application of the Boundary Element Method for investigation of nonlinear surface gravity waves in laboratory conditions

 

Anatoliy Khait, PhD
 

Water Waves Research Laboratory

School of Mechanical Engineering
Tel-Aviv University, Israel

 

Experimental investigation of surface gravity waves is a complicated task even under controlled laboratory conditions. Application of numerical models in parallel with the experiments may lead to a better understanding of the physical processes provided that the simulations are executed at the conditions that allow direct comparison between the numerical and experimental results. To this end, actual boundary conditions at the walls of the experimental wave flume should be taken into account in the numerical model, including those due to the motion of the wavemaker. For that purpose, Numerical Wave Tank (NWT) based on Boundary Element Method (BEM) was developed and applied to a number of problems related to the mechanically generated water waves.

We first validate the accuracy of the NWT by carrying out detailed comparison of numerical and experimental results. We then consider the phenomenon of the wave breaking. The main outcome of this part is verification of the kinematic criterion of the wave breaking in the formulation that states that breaking occurs when horizontal velocity of a fluid particle at the tip of the wave crest exceeds the crest propagation speed. Application of BEM allowed detailed analysis of the wave crest kinematics with a very fine temporal resolution. The actual motion of the wavemaker as recorded in experiments was introduced to the BEM as a boundary condition, the numerical results were compared against measurements.

We then consider the problem of the mechanical generation of the nonlinear steep waves. Application of the existing theories of the wave generation leads to significant errors (more that 10-20%) even for the 1st order harmonics. Theoretical analysis of the wave generation process together with the numerical simulations utilizing BEM allowed improvement of the wave generation accuracy. The results of the BEM simulations were verified experimentally in the laboratory wave flume.

 

School of Mechanical Engineering Evgeny Miroshnichenko

13 ביוני 2018, 14:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Evgeny Miroshnichenko

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, June 13, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Scrutiny of Instabilities in Czochralski Crystal Growth Configuration Using Complementary Experimental Technologies

 

Mr. Evgeny Miroshnichenko

Mr. Evgeny Miroshnichenko

Ph.D Student of Prof. E. Kit

 

A parametric experimental study of cold plume instability that appears in the large-Prandtl-number Czochralski melt flows is reported. The critical temperature difference (the critical Grashof number) and the frequency of appearing oscillations were measured for varying Prandtl numbers, aspect ratios of the melt, and crystal/crucible radii ratio. The measurements were carried out by two independent and fully non-intrusive experimental techniques. The results are reported as dimensionless parametric dependencies, and then are joined into relatively simple empirical relations.

The parametric relations for the critical Grashof number and oscillations frequency are extended to include parameters of the capillary meniscus height for different Prandtl numbers, radii and aspect ratios. The results show that with increase of the meniscus height the critical temperature difference noticeably grows and sometimes doubles. The difference between results obtained for “short” and “tall” menisci is noticeable. This might explain the saturation of the dependence of the critical Grashof number on meniscus height. An additional qualitative experiment using PVC tube replaces the meniscus allows to observe even reverse the sense of the temperature dependence following the saturation.

Modeling of effects associated with the nonlinear crystal front shows different flow regimes distributed under the dummy. The results show that the presence of liquid filled cavity inside the crystal reduces dramatically the stability factor, even while axial symmetry preserved. Experiments preventing surface tension by covering of free surface estimated a contribution of Marangoni effect to instability. Therefore, a correction term considering these effects is required for the forgoing critical Grashof number and the frequency relations.

Two- and three dimensional flow patterns of supercritical regimes and different types of instability occurs in Czochralski model were visualized using Schlieren method.

Baroclinic instability caused by dummy rotation were also considered in purpose to examine Richardson/Reynolds numbers dependence over widened range of rotation rates.

איך מקימים קרן הון סיכון בסן פרנסיסקו

16 במאי 2018, 18:30 
חדר 206 בניין וולפסון בפקולטה להנדסה  
איך מקימים קרן הון סיכון בסן פרנסיסקו

איך מקימים קרן הון סיכון בסן פרנסיסקו 

 

איך מקימים קרן הון סיכון בסן פרנסיסקו 

כחלק מהשקת סדרת מפגשים חדשה "טכנולוגיה ועסקים גלובליים"

בהם נקיים מפגשים עם בוגרי הפקולטה השוהים בחו״ל

מוזמנים למפגש עם נדב אילת 
בוגר הפקולטה שנמצא בשנים האחרונות בסן-פרנסיסקו

והקים את הקרן Tank Hill Ventures

 

יום רביעי 16.05.18

התכנסות 18:30

מצגת כולל שאלות ותשובות 19:00-20:30

פרטים והרשמה בלינק- לחצו כאן

מספר המקומות מוגבל

עדיפות תינתן לבוגרי הפקולטה להנדסה אוניברסיטת תל אביב
(כולל סטודנטים וסגל (ללא תשלום
לאורחים בתשלום סמלי
 אורחים - 40 ש"ח 
הקלק לתשלום

 יש להרשם מראש על מנת להבטיח מקומך 

 קוד אירוע ישלח לנרשמים

 

 

 

בלוקצ'יין, מטבעות קריפטוגרפיים ועתיד הכסף

09 במאי 2018, 18:30 
אולם 020 בפקולטה להנדסה  
בלוקצ'יין, מטבעות קריפטוגרפיים ועתיד הכסף

בלוקצ'יין, מטבעות קריפטוגרפיים ועתיד הכסף 
 

בלוקצ'יין, מטבעות קריפטוגרפיים ועתיד הכסף 
 

עם מארק סמרגון  
 שותף מייסד וסמנכ"ל לענייני בלוק'ציין חברת קולו

יום רביעי 09.05.18

התכנסות 18:30 

הרצאה (כולל שאלות ותשובות) 19:00-20:30

 

פרטים והרשמה בלינק המצורף 

 יש להרשם מראש על מנת להבטיח מקומך

בוגרים, סטודנטים, חברי סגל של הפקולטה להנדסה, כולל בני/בנות זוג- ללא תשלום

אורחים בתשלום סמלי בסך 40 ש"ח- לתשלום לחצו כאן

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>