סמינר מחלקה של רוני גולדשמיט פיתוח חיישני זרימה במחירים סבירים לאתגר האקלים

15 במאי 2023, 14:00 
פקולטה להנדסה  
0
סמינר מחלקה של רוני גולדשמיט פיתוח חיישני זרימה במחירים סבירים לאתגר האקלים

 

School of Mechanical Engineering Seminar
Monday May 15.5.2023 at 14:00

Wolfson Building of Mechanical Engineering, Room 206

 

Developing affordable flow sensors for the climate challenge

 

 

Dr.  Roni goldshmid

Dr. Roni Goldshmid is a postdoctoral scholar in the Graduate Aerospace Laboratories at the California Institute of Technology

 

Accurate mapping of the wind can enable more efficient renewable energy technologies as well as more accurate monitoring and modeling of weather and climate. Current ubiquitous wind sensors provide pointwise records but scaling them to full field requires installation and maintenance of a large number of sensors, which can be cost prohibitive.  Therefore, I will demonstrate an affordable alternative in which quantitative estimates of wind speed and direction are inferred based on visual observations of associated flow-structure interactions such as swaying trees and flapping flags, named visual anemometry (VA). To explore generalizability of VA, i.e., the procedure that does not require calibration measurements or a priori collection of training data, I conducted a laboratory study of VA in an open circuit wind tunnel using eight species of vegetation and modeled the relationship between the vegetation displacement fields and wind velocity.  

 

Bio: 

Dr. Roni Goldshmid is a postdoctoral scholar in the Graduate Aerospace Laboratories at the California Institute of Technology. Roni received her B.S. at the University of California, Berkeley, and her M.S. and Ph.D. in the department of Civil and Environmental Engineering at the Technion – Israel Institute of Technology. Roni was named a rising star in mechanical engineering by Stanford University (2022), has authored two successful grants (NSF 2019 and ISF 2018) and has received the Grinshpen prize for excellent research in environmental engineering and air quality (2016). Her research interests and expertise include experimental fluid dynamics, where she focuses on fundamental and applied problems such as fluid-structure interactions, boundary layer flows, and interpretation of imperfect empirical data. 

https://tau-ac-il.zoom.us/j/86497933118

יום פרויקטים של בית הספר להנדסת חשמל בחסות חברת INTEL

27 ביוני 2023, 9:00 - 17:00 
 
Save the date

יום פרוייקטים במחלקה לחשמל- שמרו את התאריך ה27.06

הנכם.ן מוזמנים.ות ליום פרוייקטים בחשמל שיערך ביום שלישי ה27.06.23 ויתקיים בפקולטה להנדסה בבניין כיתות חשמל. 

 

נשמח לראותכם בין אורחינו,

 

ארגון עמיתי התעשייה והמחלקה לחשמל מהפקולטה להנדסה. 

 

לינק להזמנה

 

סמינר מחלקה של צחי כהן -לוקליזציה של הד בלתי משתנה באמצעות עטלפים (אוזן חיצונית)

26 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של צחי כהן - לוקליזציה של הד בלתי משתנה באמצעות עטלפים (אוזן חיצונית)

 

 

 

 

School of Mechanical Engineering Seminar
Monday, June 26, 2023, at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

 

Invariant Echo-Localization Using Bat Pinnae (External Ear)

 

Zahi Cohen

M.Sc. Student of Prof. Yossi Yovel

Sound localization is arguably one of the most important functions of the vertebrate auditory system. Animals must properly localize the sound of a predator, a prey or a potential mate. The mammalian external ear (the pinnae) has evolved especially to assist sound localization. The pinnae is thought to generate spectral cues that enable assigning a specific sound spectrum to a specific direction in space. Echolocating bats must constantly localize the direction of acoustic targets – the echoes reflected from different objects. Bats have a uniquely difficult task because echoes are naturally filtered (due to target shape and distance) independently of target direction. To examine if and how the bat pinna allows solving this ambiguity, we used a bio-mimetic system which included a 3D model of the bat pinna and which allowed us to emit bat-like echolocation signals and record the echoes. In our study, we focused on echolocating bats and showed how crucial external ears are for echo-localization. The setup model that included pinnae performed far better than the no-pinnae model allowing accurate sound localization independently of object shape and distance. The pinnae also improved the uniformity of the performance – allowing better sound localization for any azimuth angle. Using a simple computational and physical model, we managed to quantify the advantage of evolving external ears. Unlike most previous studies, we generated actual echoes from various shapes and estimated our ability to localize them based on the reflected spectra, comparing a setup that included a 3D model of the external ear to one that did not. We developed a mathematical framework to estimate the azimuth of the sound source based on its spectrum, and we specifically examine how pinnae affect localization accuracy for targets of different shapes and at different distances.

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

סמינר מחלקה של ליאור מורדוך

28 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של ליאור מורדוך

פרטים יפורסמו בהמשך

סמינר מחלקה של חן דהן שהרבני - מודלים מיקרו-מכאניים רב-פאזיים של PHFGMC עבור חומרים מרוכבים מטריצת קרמיקה מבוססי C/C-SiC

21 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של חן דהן שהרבני - מודלים מיקרו-מכאניים רב-פאזיים של PHFGMC עבור חומרים מרוכבים מטריצת קרמיקה מבוססי C/C-SiC

 

School of Mechanical Engineering Seminar
Wednesday June 21.6.2023

Wolfson Building of Mechanical Engineering, Room 206

 

Multi-phase PHFGMC micromechanical models for C/C-SiC based Ceramic Matrix Composites

 

Chen Dahan Sharhabani

 

M.Sc. research under the supervision of Prof. Rami Haj-Ali Tel Aviv University, Department of Mechanical Engineering

 

 

New advanced carbon-based Ceramic Matrix Composites (CMCs) are a novel class of materials that overcome the oxidation encountered in C/C applications, including hypersonic systems. CMCs inhibit good mechanical properties (relative to C/C), favorable damage tolerance (Compared to ceramics), and relatively low density. This cluster of properties advances the use of CMCs in high-temperature aerospace, energy, and transport applications, where an oxidation environment is present. The properties of fiber-reinforced ceramics depend strongly on their microstructure and composition. In addition, CMC final thermomechanical properties depend strongly on fiber and ply architecture and the manufacturing parameters controlling the different thermal steps used during manufacturing.

An iterative material design development and manufacturing, followed by material characterizations and evaluations, can be cost-prohibitive and requires a longtime approach. This study advocates using predictive micromechanical models in CMC material design to reduce cost and design time cycle. Most micromechanical models consider the phases that inhibit the composite material and can perform average or equivalent properties over the volume of the phases. More advanced and refined micromodels recognize and account for several microstructural details, including dominant phases and their interface (or interphase) parameters. These refined models should be capable of nonlinear and damage predictions and can be readily used to study the effect of porosity (or voids) on elastic behavior. 

The current study introduces a refined micro-modeling framework that recognizes several material and microstructural details of the CMC material using the parametric high-fidelity generalized method of cells (PHFGMC). The PHFGMC can attain high-accuracy solutions for realistic physical problems of composite materials and allows the nonlinear thermomechanical solution for multiscale and multi-phase three-dimensional problems. 

 A two-level hierarchical framework based on the PHFGMC micromechanical model is implemented using CT-based C/C-SiC ceramic matrix composite scan geometries. Towards that goal, two nested PHFGMC micromechanical models are nested and integrated to represent the CMC micro and meso material levels.   The proposed framework enables a realistic depiction of the material structure and allows for calculating the effective orthotropic properties of a single lamina. The proposed modeling can be used to design a broad class of CMC materials with different weave architectures. Our PHFGMC prediction results were compared to mechanical properties conducted in collaboration with Rafael's advanced material lab for the tensile behavior of CMC specimens. The proposed PHFGMC framework demonstrated good prediction results.

 

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

 

סמינר מחלקה של עומר טל - ביומכניקה של מסתמי אבי העורקים מסויידים: מודלים חזויים של גדילה וניתוח מכני של תיקון TAVI

21 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של עומר טל - ביומכניקה של מסתמי אבי העורקים מסויידים: מודלים חזויים של גדילה וניתוח מכני של תיקון TAVI

 

School of Mechanical Engineering Seminar
Wednesday June 21.6.2023

Wolfson Building of Mechanical Engineering, Room 206

 

Biomechanics of Calcified Aortic Valves:  Predictive Growth Models and Mechanical Analysis of TAVI Repair

 

Omer Tal

 

M.Sc. research under the supervision of Prof. Rami Haj-Ali Tel Aviv University, Department of Mechanical Engineering

 

 

The aortic valve (AV) is one of four heart valves and is the final one encountered by oxygenated blood as it leaves the heart. It is responsible for preventing the backflow of oxygen-rich blood from the aorta into the left ventricle during diastole. Aortic stenosis (AS) is the most prevalent of all valvular heart diseases in developed countries. Roughly 25% of people over 65 have AV thickening and 3% over 75 have severe stenosis. AV calcification refers to the inflammation and remodeling of the extracellular matrix, resulting in the formation of bone-like structures on the valve. Calcified AS is the leading cause of valve replacement in developed nations. More than 50% of patients diagnosed with AS have bicuspid aortic valves (BAV), and their disease progression rate is accelerated compared to patients with a tricuspid aortic valve (TAV). Transcatheter Aortic Valve Implantation (TAVI) is a minimally invasive procedure used to replace a damaged AV without open-heart surgery. Since its introduction in 2002, TAVI has become an increasingly preferred alternative to surgical aortic valve replacement.

This study presents a validation and extension of the theoretical framework of the Reversed Calcification Technique (RCT) previously proposed in our Lab. RCT enables the reconstruction of patient-specific aortic valve calcification progression, aiming to encompass the timeline from initiation to the current state. Notably, this study incorporates a time scale into the RCT theory, transforming it into a robust quantitative method capable of reconstructing calcification morphology and quantifying calcification volume at any relevant time in the past. Two approaches are introduced and rigorously validated. The RCT is utilized to provide a clinically relevant and realistic simulation of calcification growth in bicuspid aortic valves. To assess the impact of calcification distribution on valve biomechanics and transcatheter aortic valve implantation (TAVI) outcomes, finite element analyses are conducted by integrating RCT with a group-specific calcification modeling technique. By dividing the bicuspid aortic valve calcification into regional calcification, precise control over calcification distribution is achieved by manipulating regional calcification growth stages. Multiple valve calcification distributions are simulated with critical parameters, including pre-and post-TAVI valve area, maximal stresses on the valve, and anchoring forces. The extended RCT method is quantitative and capable of predicting the total volume growth of different TAV and BAV patents (n=14) with an average error of 15% from multiple CT over a maximum time interval of 5 years. Combining RCT in BAV to perform TAVI simulations at different calcification stages can serve in the patient-specific design of future repair therapy. This study advances our understanding of calcified bicuspid aortic valves and offers valuable insights for optimizing TAVI procedures.

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

 

תכנית ההתמחויות של גוגל ישראל

01 במאי 2023, 8:00 
 
Google internship

תכנית התמחויות של גוגל

Hardware/Electrical Engineering Intern, 2023

Apply

Please complete your application before May 31st 2023. We encourage you to apply as early as possible as we review applications on a rolling basis.

To start the application process, you will need an updated CV or resume and a current unofficial or official transcript in English. Click on the “Apply” button on this page and provide the required materials in the appropriate sections (PDFs preferred):

  • 1. In the “Resume Section:” attach an updated CV or resume.
  • 2. In the “Education Section:” attach a current or recent unofficial or official transcript in English.
    • Under “Degree Status,” select “Now attending” to upload a transcript.

This internship is intended for students who can start in summer 2023, although the specific start date and duration is flexible. Participation in the internship programme requires that you are located in Israel for the duration of the internship programme.

Note: By applying to this position you will have an opportunity to share your preferred working location from the following: Tel Aviv, Israel; Haifa, Israel.

Qualifications

Minimum qualifications:

  • Currently pursuing a Bachelor's degree in Electrical Engineering, Computer Engineering or a related technical field.
  • Ability to speak and write in English fluently.

Preferred qualifications:

  • Currently enrolled in a full time degree program.
  • Internship work, work experience, or personal project experience in Hardware or Electrical Engineering.
  •  Experience writing code in one or more languages (e.g., C, C++, or Python).

About the job

As an Electrical Engineering Intern in the domain of VLSI (Very Large-Scale Integration) you will work on designing, developing and verifying next generation chips for Google’s Cloud Compute Infrastructure. You will have the opportunity to collaborate with engineers from various parts of the org to help develop Google’s next generation SOC (systems on chip).

Google Cloud accelerates organizations’ ability to digitally transform their business with the best infrastructure, platform, industry solutions and expertise. We deliver enterprise-grade solutions that leverage Google’s cutting-edge technology – all on the cleanest cloud in the industry. Customers in more than 200 countries and territories turn to Google Cloud as their trusted partner to enable growth and solve their most critical business problems.

Responsibilities

  • Responsibilities vary based on specific teams.

 

ההרשמה לתכנית התמחויות של גוגל ישראל נפתחה ותסתיים ב31.05!

התכנית מיועדת לסטודנטים.ות להנדסת חשמל ותוכנה בלבד.

כדי להיות זכאים.ות להגיש מועמדות, על המועמדים.ות:

  1. ללמוד השנה לתואר ראשון בהנדסת חשמל ותוכנה. 
  2. יכולת דיבור וכתיבה באנגלית באופן שוטף.

כישורים חשובים נוספים:

  1. רשומים.ות כעת לתכנית לתואר במשרה מלאה.
  2. עבודת התמחות, ניסיון בעבודה או ניסיון אישי בפרויקט בהנדסת חומרה או חשמל.
  3.   ניסיון בכתיבת קוד בשפה אחת או יותר (למשל, C, C++ או Python).

כמתמחה בהנדסת חשמל בתחום VLSI (Very Large-Scale Integration) תעסקו בתכנון, פיתוח ואימות שבבים מהדור הבא עבור תשתית מחשוב הענן של גוגל. תהיה לכם.ן הזדמנות לשתף פעולה עם מהנדסים.ות מחלקים שונים של הארגון כדי לעזור בפיתוח הדור הבא של Google SOC (מערכות על שבב).

להרשמה

בהצלחה!

יום זרקור חברת SolarEdge

08 במאי 2023, 12:00 
שדרת הדקלים , הפקולטה להנדסה  
יום זרקור חברת SolarEdge

בואו להתעניין ולהתרענן

 

סטודנטים.ות להנדסת חשמל, מכונות ותעשיה וניהול חברת SolarEdge מגיעה כדי לפגוש אתכם.ן ביום זרקור מהנה.

SolarEdge הינה חברה ישראלית ציבורית, מובילה עולמית בטכנולוגיית אנרגיה חכמה, הנסחרת בנאסד"ק בארה"ב. החברה מייצרת מוצרים ושירותים בתחום האנרגיה המתחדשת כגון: מערכות סולאריות ביתיות ומסחריות המאפשרות ניצול מקסימאלי של אנרגיה, רכבים חשמליים, סוללות נטענות, ניהול בית חכם ועוד… המערכות של SolarEdge נמכרות בלמעלה מ- 130 מדינות ברחבי העולם, ומאפשרות למאות אלפים ליהנות יום יום מייצור אנרגיה נקיה וירוקה. 

רוצים.ות לשמוע על אפשרויות התעסוקה בחברה? איך ניתן להשתלב ובאילו תפקידים? 

בואו לפגוש את צוות החברה!

מתי? : יום שני ה08.05.23

שעה?: 12:00-14:00

איפה?: שדרת הדקלים, בפקולטה להנדסה.

נתראה!

 

 

 

 

 

סמינר מחלקה של ניר גוב - "הגיאומטריה של קבלת החלטות בקולקטיבים וביחידים"

12 ביוני 2023, 14:00 - 15:00 
פקולטה להנדסה  
0
סמינר מחלקה של ניר גוב - "הגיאומטריה של קבלת החלטות בקולקטיבים וביחידים"

פרטים יפורסמו בהמשך

 

School of Mechanical Engineering Seminar
Monday 12.06.2023 at 14:00

Wolfson Building of Mechanical Engineering, Room 206

 

"The geometry of decision-making in collectives and individuals"

 

Nir Gov

Phd in theoretical physics at the Technion

 

Choosing among spatially distributed options is a central challenge for animals, from deciding among alternative potential food sources or refuges to choosing with whom to associate. We present a spin-based model that describes the decision-making process while the animal is moving through space and assessing the different options. Using an integrated theoretical and experimental approach (employing immersive virtual reality), we test the predicted interplay between movement and vectorial integration during decision-making regarding two, or more, options in space.  The theoretical model reveals the occurrence of spontaneous and abrupt “critical” transitions, whereby organisms spontaneously switch from averaging vectorial information to suddenly excluding one among, the remaining options. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that they exhibit these same bifurcations, demonstrating that across taxa there exist fundamental geometric principles that determine how, and why, animals move the way they do.

 

Short bio:

Phd in theoretical physics at the Technion (low-temperature quantum mechanics) 1998

Postdoc at the U of Illinois Urbana-Champaign, QM

Postdoc in Weizmann, Bio-phys.

PI in weizmann since 2004

My research team and I have been developing theoretical models for various phenomena in biology that involve many interacting units, from the collective migration of cells within a body to collective motion of animals within a group. In addition we study the dynamics of cell shapes, cell migration and general non-equilibrium physics.

 

Join Zoom Meeting https://tau-ac-il.zoom.us/j/86497933118

 

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>