שבוע של ביקורים במעבדות המחקר, סדנאות מעשיות ושלל פעילויות מעוררות השראה

GNC (Guidance, Navigation & Control) engineer – Part time, 3rd year student job, on-site in Rishon Le-Zion

Qualifications:

3rd year B.Sc. in Electronics\Mechanical engineering, majoring control systems.

Hands-on experience and knowledge of C++, Python, ROS2 programming.

Problem solver, open mind thinker.

Team player with high interpersonal communication capabilities.

Responsible and highly motivated independent issue pusher.

 

Junior\Senior GNC (Guidance, Navigation & Control) and algorithms engineer – Full time job on-site in Rishon Le-Zion

Qualifications:

B.Sc. in Electronics\Mechanical engineering, majoring control systems.

Hands-on extensive experience and in-depth knowledge of C++, Python, ROS2 programming.

Problem solver, open mind thinker.

Team player with high interpersonal communication capabilities.

Responsible and highly motivated independent issue pusher.
Advantages:

EE Seminar: Class Filter - a Fast, Efficient, and Concurrent Dynamic Filter

12 במאי 2025, 15:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Class Filter - a Fast, Efficient, and Concurrent Dynamic Filter

Electrical Engineering Systems Seminar

 

Speaker: Hagay Halperin

M.Sc. student under the supervision of Prof. Guy Even

 

Monday, 12th May 2025, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

Class Filter - a Fast, Efficient, and Concurrent Dynamic Filter

Abstract

Filters, such as the Bloom filter, are widely used approximate membership query (AMQ) data structures. Filters are fast, compact, and have a wide range of applications. Dynamic filters, which support insertions, queries, and deletions, often have a trade-off between space efficiency and performance and are often not scalable for a concurrent use case.

In this thesis, we introduce the class filter - a dynamic filter that is space efficient, fast, robust, supports full concurrency and has scalable concurrent performance compared to other filters. The class filter’s architectures strive to minimize the mean memory access count and prioritize false query performance. We introduce the pipeline technique to increase operation performance, which may be used in other filters and dictionaries. Additionally, we obtain a space lower bound for dynamic filters with a dual-pool structure, showing that asymmetry between the pools benefits the total filter’s space efficiency. Our simulations show that the class filter structure benefits from this asymmetry.

We evaluated our implementation against many reference dynamic filters in many scenarios. Our benchmarks focus on both single-threaded and multithreaded scenarios. We also explore the ”Fixed-DB” case, where concurrent queries are executed on an instance of an immutable filter. Our implementation shows competitive performance gains in all scenarios.

 

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל

Registration to the seminar will be done by scanning the barcode for the Moodle

 

 

 

פרופ' ליהי אדלר-אברמוביץ, פרופ' בריאן רוזן, פרופ' נתן שקד ופרופ' אלכסנדר גולברג מאוניברסיטת תל אביב מונו לעמיתים בכירים באקדמיה הלאומית לממציאים של ארה"ב כהוקרה על תרומתם לחדשנות ולמסחור טכנולוגיות פורצות דרך 

הקבוצה של פרופ׳ גילי ביסקר פתחה חיישנים המבוססים ננו-צינוריות מפחמן לזיהוי וניטור של הפעילות האנזימטית של אצטילכולינאסטראז בדם. הפתרון החדשני מתגבר על המגבלות של שיטות מדידה מסורתיות, ומאפשר רגישות גבוהה במיוחד, מבלי מהפרעות הנובעות ממרכיבי הדם. היכולת לאתר שינויים בפעילות האנזימטית בזמן אמת ובתנאים מורכבים פותחת פתח ליישומים רבים בתחומי הרפואה, האבחון המוקדם וניתור גורמי סיכון סביבתיים. 

האתגרים שמדינת ישראל ניצבת בפניהם בהתמודדות עם משבר האקלים והצורך בתכנון, חדשנות, שינוי מדיניות ושיתוף פעולה רחב. פרופ' ורד בלאס וד"ר חצב יפה

EE Seminar: Sense-Plan-Act in the age of Deep Learning

12 במאי 2025, 13:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Sense-Plan-Act in the age of Deep Learning

(The talk will be given in English)

 

Speaker:     Prof. Aviv Tamar

                        Electrical and Computer Engineering department, Technion

 

011 hall, Electrical Engineering-Kitot Building‏

Monday, May 12th, 2025

13:00 - 14:00

 

Sense-Plan-Act in the age of Deep Learning

 

Abstract

A central paradigm in autonomous robots is the "sense-plan-act" loop, where at each time step the robot observes the environment, plans an appropriate action, executes it, and continues to the next observation. This talk focuses on the role of deep neural networks in this paradigm. I will first cover several works on learning world models for robotic manipulation, starting with the Causal InfoGAN model for rope manipulation, and more recent work based on our Deep Latent Particles (DLP) model. Here, neural networks are used to learn a model of the environment, which can be used for planning, or for directly learning a policy. The second part of the talk will focus on using neural networks to speed up a planning algorithm (e.g., tree search), based on our recent work on Bayesian Online Planning. The main idea is that neural networks can be seen as approximate posteriors in a Bayesian formulation of tree search that we propose. In this formulation, the *uncertainty* of the neural network prediction is automatically accounted for, and can be exploited for faster search.

Short Bio

Aviv Tamar is an associate professor at the Electrical and Computer Engineering department at Technion. His work focuses on reinforcement learning and robot learning. Aviv is the recipient of the Krill prize, an ERC starting grant, and best paper awards at NeurIPS and NSDI.

 

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל

Registration to the seminar will be done by scanning the barcode for the Moodle

 

 

 

EE Seminar: Real price of bandit information in multiclass classification

05 במאי 2025, 13:00 
חדר 011, בניין כיתות חשמל  
EE Seminar: Real price of bandit information in multiclass classification

(The talk will be given in English)

 

Speaker:     Dr. Alon Cohen

                        ECE, Tel Aviv University & Google

 

011 hall, Electrical Engineering-Kitot Building‏

Monday, May 5th, 2025

13:00 - 14:00

 

Real price of bandit information in multiclass classification

 

Abstract

In bandit multiclass classification, examples arrive one at a time, the learner guesses their label and only observes whether the guess was correct. This limited feedback increases the sample complexity, a phenomenon termed "price of bandit information.”  Classic works bound this increment by an additional factor of the number of labels, but whether this bound is tight remains an open question, with no nontrivial lower bound existing for this setting. In our work, we investigate the true price of bandit information.

Online Setting: Our first study focuses on the online setting, where the aim is to bound regret—the difference between the number of mistakes made by our algorithm and the best hypothesis in hindsight. Prior work shows that regret can be bounded by \sqrt{K T \log |H|}, where K is the number of labels, T is the time horizon and H is the finite hypothesis class. This is compared to \sqrt{T \log |H|} when labels are fully observed. We improve this bound to \min\{|H| + \sqrt{T}, \sqrt{K T \log |H|}\}, providing matching upper and lower bounds thus establishing tightness up to logarithmic factors. Our lower bounds indicate that regret scales with the number of labels K, confirming an unavoidable price of bandit information as an additional factor of K only in the non-asymptotic regime.

PAC Setting: In our second study, we address the PAC setting and propose an algorithm with a sample complexity of (poly(K) + 1/\epsilon^2)\log(|H|/\delta). We demonstrate the implementation of our algorithm in polynomial time, given an efficient empirical risk minimization algorithm over the hypothesis class. Surprisingly, we find that in the PAC setting, for sufficiently small \epsilon, there is no price for bandit information. Our result reveals a significant gap between the price of bandit feedback in terms of regret and sample complexity, challenging conventional expectations.

Short Bio

Alon Cohen is a senior lecturer at the School of EE at Tel-Aviv University as well as a research scientist in Google. He has received his PhD from IE&M at the Technion under the supervision of Prof. Tamir Hazan. His research interests revolve around reinforcement learning, online and statistical learning theory, and connections thereof.

 

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל

Registration to the seminar will be done by scanning the barcode for the Moodle

 

 

 

 

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>