EE Seminar: Denoising of medical images acquired with radiation constraint

19 בינואר 2020, 15:00 
Room 011, Kitot Building  

Speaker: Michael Green

Ph.D. student under the supervision of Prof. Nahum Kiryati and Dr. Arnaldo Mayer

 

Sunday, January 19th, 2020 at 15:00
Room 011, Kitot Bldg., Faculty of Engineering

Denoising of medical images acquired with radiation constraint

 

Abstract

Computed Tomography (CT) has become an invaluable tool in diagnostic imaging, providing fast, cost effective, and high-quality imaging in countless indications.

Mammography is the only imaging modality cleared by the FDA for breast cancer screening, saving each year million of lives around the word.

Both imaging modalities share the same disadvantage, the exposure of the patient to a significant dose of x ray radiation which may increase the risk of developing cancer.

Decreasing radiation dose will progressively degrade the image quality as the amount of noise increases, until the diagnostic value of the image is lost.

 

In this research, novel image denoising techniques have been developed to enhance CT and mammography images acquired at ultra-low radiation doses, corresponding to a few percent of the normal doses used in clinical routine.  The resulting denoised images are visually similar to normal dose images and have recovered their diagnostic value.

 

During this talk, I will focus on different directions we used for developing a good and stable denoising algorithm, for removing the noise while maintaining small and important details.

EE Seminar: Towards Automatic Lesion Detection in 3D Prostate MRI Scans

26 בינואר 2020, 15:30 
Room 011, Kitot Building  

Speaker: Ophir Yaniv

M.Sc. student under the supervision of Prof. Nahum Kiryati and Dr. Arnaldo Mayer

 

Sunday, January 26th, 2020 at 15:30

Room 011, Kitot Bldg., Faculty of Engineering

 

Towards Automatic Lesion Detection in 3D Prostate MRI Scans

 

Abstract

 

Prostate cancer is the second most common cancer among men. Early detection is critical to the success of its treatment. Thanks to the excellent contrast it provides in soft tissues, prostate MRI has become the tool of choice in prostate cancer imaging.

 

We present a novel approach for the automated detection of prostate lesions in 3D MRI scans. Our methodology divides the workflow into two stages: 1) Segmentation of the prostate within the MRI scan to remove unrelated tissues. 2) Detection of suspected malignancies within the segmented prostate.

Previous methods of 3D prostate segmentation required high computational power and memory which are usually not available on the PCs used by radiologists. We propose a novel 3D deep neural network architecture, called V-net Light (VnL), that is based on a computationally efficient 3D Module, called 3D Light. The resulting network minimizes the number of parameters while maintaining state-of-the-art segmentation results.

Qualitative and quantitative validation of the proposed architecture will be presented.

To conclude, several directions for the lesion detection stage, to be developed in continuation of this research, will be discussed.

 

EE Seminar: NLDNet++: A Physics Based Single Image Dehazing Network

27 בינואר 2020, 15:00 
Room 011, Kitot Building  

Speaker: Iris Tal

M.Sc. student under the supervision of Prof. Shai Avidan

 

Monday, January 27, 2020 at 15:00

Room 011, Kitot Bldg., Faculty of Engineering

 

NLDNet++: A Physics Based Single Image Dehazing Network

Abstract

Deep learning methods for image dehazing achieve impressive results. Yet, the task of collecting ground truth hazy/dehazed image pairs to train the network is cumbersome. We propose to use Non-Local Image Dehazing (NLD), an existing physics based technique, to provide the dehazed image required to training a network.

Upon close inspection, we find that NLD suffers from several shortcomings and propose novel extensions to improve it. The new method, termed NLD++, consists of 1) denoising the input image as pre-processing step to avoid noise amplification, 2) introducing a constrained optimization that respects physical constraints. NLD++ produces superior results to NLD at the expense of increased computational cost. To offset that, we propose NLDNet++, a fully convolutional network that is trained on pairs of hazy images and images dehazed by NLD++. This eliminates the need of existing deep learning methods that require hazy/dehazed image pairs that are difficult to obtain. We evaluate the performance of NLDNet++ on standard data sets and find it to compare favorably with existing methods.

EE Seminar: VBNets: Learning Entity Representations via Variational Bayesian Networks

12 בינואר 2020, 15:00 
Room 011' Kitot Building  

 (The talk will be given in English)

 

Speaker:     Dr. Oren Barkan
                    Microsoft, Israel

 

SUNDAY, January 12th, 2020
15:00 - 16:00

Room 011, Kitot Bldg., Faculty of Engineering

 

VBNets: Learning Entity Representations via Variational Bayesian Networks

Abstract

Learning entity representations is an active research field. In the last decade, both the NLP and recommender systems communities introduced a plethora of methods for mapping words, items and users to vectors in a latent space. The vast majority of these works utilize implicit co-occurrences relations (e.g.  co-occurrences of words in text, co-consumption of items by users) for learning the latent entity vectors. Yet, often, additional side information in the form of explicit (e.g. hierarchical, semantic, syntactic) relations can be leveraged for learning finer embeddings. 

In this talk, we present Variational Bayesian Networks (VBNets) - A novel scalable hierarchical Bayesian model that utilizes both implicit and explicit relations for learning entity representations. VBNets are designed for Microsoft Store and Xbox services that handle around a billion users worldwide. Different from point estimate solutions that map entities to vectors and are usually over confident, VBNets map entities to densities in the latent space and hence model uncertainty. VBNets are based on analytical approximations of the intractable entities' posterior and the posterior predictive distribution of the data. We demonstrate the effectiveness of VBNets on linguistic, recommendations, and medical informatics tasks, where it is shown to outperform other alternative methods that facilitate Bayesian modeling with or without semantic priors. In addition, we show that VBNets produce superior representations for rare words and cold items. If time permits, we will give a brief overview of several recent deep learning works in the domains of deep neural attention mechanisms, multiview representation learning and inverse problems with applications for natural language understanding, recommender systems, computer vision, sound synthesis and biometrics. 

Short Bio
Oren Barkan is a Principal Researcher at Microsoft, where he was previously a post-doctoral researcher, collaborating with Microsoft Research UK and Microsoft Israel. Prior to that, he was with Google Research and IBM Research. He received his Ph.D. from Tel Aviv University, under the supervision of Prof. Amir Averbuch. His research interests are deep neural attention mechanisms, representation learning, multiview learning, Bayesian inference and inverse problems with applications for computer vision, natural language understanding, recommender systems, speech analysis, sound synthesis, biometrics, inflation forecasting, healthcare and medical informatics. He is the author of more than 40 research papers and patents.

School of Mechanical Engineering: Benson Eitan

20 בינואר 2020, 14:00 - 15:00 
 
0
School of Mechanical Engineering: Benson Eitan

צור קשר

לא מצאתם תשובה לשאלות שלכם באתר? למה שלא תשאלו אותנו?

To prevent automated spam submissions leave this field empty.

מהנדס/ת אפליקציה לתחום ה- PLM

דרישות התפקיד:

*במסגרת מדיניות האוניברסיטה לעידוד גיוון תעסוקתי, ניתנת עדיפות למועמדים העונים על דרישות התפקיד ומשתייכים לאוכלוסיות אלו: חברה ערבית, חרדים, יוצאי העדה האתיופית ומועמדים עם מוגבלות. רק פניות מתאימות תענינה. في إطار سياسة الجامعة لتشجيع التنوّع التوظيفيّ، تُعطى أولويّة للمرشّحين الذين يستوفون متطلّبات الوظيفة وينتمون إلى إحدى المجموعات التالية: المجتمع العربيّ، الحريديم، أبناء الطائفة الأثيوبيّة والمرشّحين أصحاب الإعاقات.

סטודנט/ית הבטחת איכות

סטודנט להנדסה תוכנה / מערכות מידע / איכות / תעשיה וניהול/ כלכלה

  • יתרת לימודים של שנתיים ומעלה - חובה
  • זמינות ליומיים מלאים לפחות - חובה
  • הכרות עם תקנים ותהליכים
  • כושר ביטוי גבוה, ראיה רוחבית ומערכתית, יחסי אנוש טובים, השתלבות בעבודת צוות, עצמאות ואסרטיביות
  • יכולת כתיבת מסמכים בעברית ובאנגלית

*נא לצרף גיליון ציונים*

הזמנה ליריד התעסוקה של המחלקה להנדסה ביו-רפואית

09 בינואר 2020, 14:00 - 17:00 
הפקולטה להנדסה אוניברסיטת תל-אביב  
חינם
יריד

הנכם מוזמנם ליריד התעסוקה של המחלקה להנדסה ביו-רפואית של הפקולטה להנדסה אוניברסיטת תל אביב

 

יום חמישי, 9.1.2020 בין השעות 14:00-17:00
ברחבת הלובי של הבניין הרב תחומי (סמוך לשער 14), אוניברסיטת תל-אביב

לינק להזמנה

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>