EE Seminar: Securing Modern Systems is More Challenging Than Ever (and Requires New Dedicated Guardrails)

30 בדצמבר 2024, 12:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Securing Modern Systems is More Challenging Than Ever (and Requires New Dedicated Guardrails)

(The talk will be given in English)

 

Speaker:     Dr. Ben Nassi

                           Research fellow in the Faculty of Electrical and Computer Engineering (ECE) at the Technion and a Board Member at Black Hat

                          

011 hall, Electrical Engineering-Kitot Building‏

Monday, December 30th, 2024

12:00 - 13:00

 

Securing Modern Systems is More Challenging Than Ever (and Requires New Dedicated Guardrails)

 

Abstract

Over the past decade, an increasing number of systems and devices have gained Internet connectivity and been enhanced with sensing capabilities and AI. While these advancements have created a world of smarter, more automated, and highly connected devices, they have also introduced significant security and privacy challenges that cannot be effectively addressed with traditional countermeasures.

In the first part of this talk, we will explore the security and privacy concerns of cyber-physical systems. Specifically, we will examine new threats that have emerged with the deployment of technologies like drones and Teslas in real-world environments. Our discussion will highlight methods for detecting intrusive drone filming and securing Teslas against time-domain adversarial attacks.

The second part of the talk focuses on the challenges posed by the coexistence of functional devices with limited computational power (that do not adhere to Moore’s law) alongside sensors with ever-increasing sampling rates. We will explore how threats such as cryptanalysis and speech eavesdropping—previously accessible only to well-resourced adversaries—can now be executed by ordinary attackers using readily available hardware like photodiodes and video cameras. These attacks leverage optical traces or video footage from a device’s power LED to extract sensitive information.

Finally, in the last part of the talk, we will address the emerging need to secure GenAI-powered applications against a new category of threats we call Promptware. This threat highlights the evolving landscape of vulnerabilities introduced by generative AI systems.

Short Bio

Bio. Dr. Ben Nassi is a research fellow in the Faculty of Electrical and Computer Engineering (ECE) at the Technion and a Board Member at Black Hat.

Ben investigates the security and privacy of systems and devices. He has introduced innovative side-channel attacks to recover speech from light emitted by light bulbs and to extract cryptographic keys from a device’s power LED using video footage. In the realm of cyber-physical systems, he developed techniques to secure Tesla vehicles against time-domain adversarial attacks and to detect intrusive video filming conducted by drones. Recently, his research has expanded to AI security, where he proposed methods to protect GenAI-powered applications from AI worms and to safeguard autonomous vehicle perception against emergency vehicle lighting attacks.

His work has been published in leading academic venues such as USENIX Security, IEEE S&P, and CCS, as well as prestigious industrial conferences, including Black Hat, DEFCON, and the RSA Conference. His research has garnered significant media attention, with features in Forbes, Fox News, Wired, Ars Technica and other major outlets.

Ben earned his PhD from Ben-Gurion University, focusing on “Security and Privacy in the IoT Era,” and completed his postdoctoral fellowship at Cornell Tech. His accomplishments include winning the 2023 Pwnie Award for Best Cryptographic Attack and the Dean’s Award for Excellence in PhD Studies.

 

השתתפות בסמינר תיתן קרדיט שמיעה לתלמידי תואר שני ושלישי = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 


 

ד"ר אנז'ליקה אלקן

ד"ר אנז'ליקה אלקן

סיימה דוקטורט בחומרים ומדע מולקולרי במכון ויצמן

סיימה פוסט דוקטורט מדע והנדסה כימית וביו מולקולרית באוניברסיטת יוסטון

ופיזיקה של מערכות מורכבות במכון ויצמן

Physical Electronics Seminar :Management of electromagnetic scattering with spatially and temporally modulated structured environment

סמינר שמיעה לתלמידי תואר שני ושלישי

24 בדצמבר 2024, 15:00 
Room 512 Tochna Building  
Physical Electronics Seminar :Management of electromagnetic scattering with spatially and temporally modulated structured environment

 

  -סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני ושלישי-  This Seminar Is Considered A Hearing Seminar For Msc/Phd Students

 

EE Seminar: Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

25 בדצמבר 2024, 15:00 
אולם 011, בניין כיתות-חשמל  
EE Seminar: Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

Electrical Engineering Systems Seminar

 

Speaker: Shahar Zuler

M.Sc. student under the supervision of Dr. Dan Raviv

 

Wednesday, 25th December 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

 

Cardio Spectrum: Comprehensive Myocardium Motion Analysis with 3D Deep Learning and Geometric Insights

 

Abstract

The ability to map left ventricle (LV) myocardial motion using computed tomography angiography (CTA) is essential to diagnosing cardiovascular conditions and guiding interventional procedures. Due to their inherent locality, conventional neural networks typically have difficulty predicting subtle tangential movements, which considerably lessens the level of precision at which myocardium three-dimensional (3D) mapping can be performed. Using 3D optical flow techniques and Functional Maps (FMs), we present a comprehensive approach to address this problem. FMs are known for their capacity to capture global geometric features, thus providing a fuller understanding of 3D geometry. As an alternative to traditional segmentation-based priors, we employ surface-based two-dimensional (2D) constraints derived from spectral correspondence methods. Our 3D deep learning architecture, based on the ARFlow model, is optimized to handle complex 3D motion analysis tasks. By incorporating FMs, we can capture the subtle tangential movements of the myocardium surface precisely, hence significantly improving the accuracy of 3D mapping of the myocardium. The experimental results confirm the effectiveness of this method in enhancing myocardium motion analysis. This approach can contribute to improving cardiovascular diagnosis and treatment.

Our code and additional resources are available at: https://shaharzuler.github.io/CardioSpectrumPage

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

LMI Special Seminar: Quantum measurement through parametric amplification

31 בדצמבר 2024, 15:30 
הפקולטה להנדסה אוניברסיטת תל אביב, בנין כיתות ,אולם 011  
LMI Special Seminar: Quantum measurement through parametric amplification

 

EE Seminar: Making Neural Networks Linear Again: Projection and Beyond

סמינר שמיעה לתלמידי תואר שני ושלישי

23 בדצמבר 2024, 12:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: Making Neural Networks Linear Again: Projection and Beyond

(The talk will be given in English)

 

Speaker:     Dr. Assaf Shocher

                              NVIDIA

                          

011 hall, Electrical Engineering-Kitot Building‏

Monday, December 23rd, 2024

12:00 - 13:00

 

Making Neural Networks Linear Again: Projection and Beyond

 

Abstract

Every day, somewhere, a researcher mutters, “If only neural networks were linear, this problem would be solved”. Linear operations offer powerful tools: projection onto subspaces, eigen decomposition, and more. This talk explores their equivalents in the non-linear world of neural networks, with a special focus on projection, generalized by idempotent operators- operators that satisfy f(f(x)) = f(x).

Idempotent Generative Network (IGN) is a generative model that is trained by enforcing two main objectives: (1) target distribution data map to themselves f(x) = x, defining the target manifold, and (2) latents project onto this manifold via the idempotence condition f(f(z)) = f(z). IGN generates data in a single step, but can iteratively refine, and projects corrupted data back onto the distribution.

This projection ability gives rise to Idempotent Test-Time Training (IT³), a method to adapt models at test time using only current out-of-distribution (OOD) input. During training, the model f receives an input x along with either the ground truth label y or a neutral "don't know" signal . At test-time, given corrupted/OOD input x, a brief training session minimizes ||f(x, f(x, )) - f(x, )||, making f(x,) idempotent. IT³ works across architectures and tasks, demonstrated for MLPs, CNNs, and GNNs on corrupted images, tabular data, OOD facial age prediction, and aerodynamic predictions.

Finally, I'll ask: "Who says neural networks are non-linear?" They're only non-linear with respect to the standard vector spaces! In an ongoing work, we construct vector spaces X, Y with their own addition, negation, and scalar multiplication, where f: X → Y becomes truly linear. This enables novel applications including spectral decomposition, zero-shot solutions to non-linear inverse problems via Pseudo-Inverse, and architecture-enforced idempotence.

Short Bio

I am a postdoctoral researcher at NVIDIA. Prior to that I was a postdoctoral fellow at UC Berkeley, working with Alyosha Efros, and a visiting researcher at Google. I received my PhD from the Weizmann Institute of Science, where I was advised by Michal Irani. I have bachelor's degrees in Physics and EE from Ben-Gurion University. My prizes and honors include the Rothschild postdoctoral fellowship, the Fulbright postdoctoral fellowship, John F. Kennedy award for outstanding Ph.D. at the Weizmann Institute, and the Blavatnik award for CS Ph.D. graduates.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 


 

טקס חלוקת התארים לבוגרי.ות ומוסמכי.ות ביה"ס להנדסת חשמל יתקיים ב-16.6.2025

 

טקס חלוקת התארים לבוגרי.ות ומוסמכי.ות ביה"ס להנדסה מכנית, התוכנית להנדסת סביבה, התוכנית להנדסת מערכות, והמחלקות להנדסת תעשייה, הנדסה ביו רפואית ומדע והנדסה של חומרים יתקיים ב-17.6.2025

 

על מנת להיכלל ברשימת מקבלי ומקבלות התעודות בטקסים אלו יש לסיים את כל החובות לתואר  ולפתוח טופס סיום לימודים לא יאוחר מה-10.3.2025.

לא תהיה אפשרות להיכלל ברשימת המסיימים למי שיסיים לאחר מועד זה

ד"ר איתי ספקטור :Advanced Histology, Cytology and Machine learning based Quantitative Image Analysis in Pre-clinical Research

סמינר פרונטלי לתלמידי תואר שני ושלישי

19 בינואר 2025, 14:00 
אוניברסיטת תל אביב  
 ד"ר איתי ספקטור :Advanced Histology, Cytology and Machine learning based Quantitative Image Analysis in Pre-clinical Research

:Abstract

Histology and Cytology play a critical role in biomedical research by enabling the detection and analysis of tissue and cell- Morphology, abnormalities, protein and RNA expression and treatments effects. Over the past decade, significant advancements have transformed this field, including the development of synthetic biomarkers and new methods that enable the use of multiple fluorescence-labeled antibodies and RNA probes on single sample section. Additionally, innovations in confocal microscopy and high-resolution slides scanning microscopes have greatly improved imaging capabilities. The emergence of Machine learning based Quantitative Image Analysis- that enables precise analysis of histology and cytology large datasets (i.e. cell populations, distances between cell populations, expression level in each cell population), patterns recognition (i.e. blood vessels populations detection and analysis, neuronal and collagen fibers parameters analysis etc.).
Together- these advancements in Histology and cytology, microscopy and image analysis- enable researchers to extract high quantity of data from each sample section, enabling accurate quantitative evaluation of basic research data and treatments effects.
In this seminar, I will present the main Histology, Cytology and Machine learning based Quantitative Image Analysis (HCA) methodologies and innovations in relevant research fields, providing examples in different cells, tissues and animal models. This will equip researchers with a better understanding of .how to apply these cutting-edge HCA techniques to their own .studies 

מר אבירם סושרד מנכ"ל פיליפס ישראל AI and the future of medicine

22 בדצמבר 2024, 14:00 
אוניברסיטת תל אביב  
 מר אבירם סושרד מנכ"ל פיליפס ישראל AI and the future of medicine

 AI and the future of medicine

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>