EcoMotion Assembly 2024 - Mobility Innovation in Times of Disruption

04 ביוני 2024, 14:00 - 18:30 
 
EcoMotion Assembly 2024 - Mobility Innovation in Times of Disruption

בייחוד בימים אלה - מעצימים את תחום ה-Smart Mobility בישראל

 

הנכם מוזמנים לכנס EcoMotion Assembly 2024 - Mobility Innovation in Times of Disruption  

שיתקיים ב-4 ביוני בקמפוס חברת Innoviz 

 

קהילת אקומושן מארחת זו השנה ה-12 את הכנס השנתי שלה בתחום ה-Smart Mobility ומזמינה במיוחד השנה את האקוסיסטם הישראלי לקחת חלק:

- במה מרכזית עם בכירי התעשייה המקומית והעולמית

- רחבת דמואים ותערוכת סטרטאפים

- כיתות אמן לסטרטאפים וסדנאות בחסות מובילי התעשייה

- נטוורקינג

- פלטפורמת פגישות B2B

- הפי האוור בחסות חברת BMW 

 

כולנו עברנו חודשים לא פשוטים, זה הזמן לקחת חלק בפעילות משמעותית ולצמוח יחד

קוד לסטודנטים לכרטיס אחה"צ (מ 14:00) חינם: EMA24student

 

לפרטים והרשמה: 

https://ecomotion-assembly.forms-wizard.biz

 

סמינר LMI -מרכז אור וחומר מארח את Dr. Amir Capua

29 במאי 2024, 13:00 
הפקולטה להנדסה אוניברסיטת תל אביב, בנין כיתות ,אולם 011  
  סמינר  LMI -מרכז אור וחומר מארח את Dr. Amir Capua

 

LMI Seminar:

Teaching an old equation new tricks: unlocking an elementary

interaction between light and magnetism using insights from

Spintronics  and Quantum technologies

Dr. Amir Capua

Faculty of Science, Applied Physics Department, The Hebrew University

Wednesday  May  29th ,  2024

13:00-14:00

 

Abstract:

The ferromagnetic resonance (FMR) experiment is pivotal for detecting spin currents in Spintronics technology. It occurs on Gigahertz timescales due the relatively slow relaxation time of the spins in ferromagnets. In contrast, optical fields oscillate much faster, at 400 − 800 THz. Therefore, it seems unlikely that such fast-oscillating fields may interact with magnetic moments. However, by combining principles from quantum optics, we have recently realized that the equations governing the FMR experiment are even relevant for magnetic fields that oscillate much faster, at optical frequencies. Namely, the interaction between optical beams and the magnetization is made possible. We find that the strength of the interaction is determined by an elementary efficiency parameter η=αγH/f_opt, where H is the amplitude of the optical magnetic field, α is the dissipation rate of spin angular momentum to the lattice, and f_opt and γ are the optical frequency and gyromagnetic ratio. Our results shed light on a variety of highly debated experimental observations on the interaction between optical fields and ferromagnets that have been reported in the last 25 years.

 

 

Dr. Amir Capua -  Short Bio

Assistant Prof. Amir Capua heads the Spintronics Lab at the Institute of Electrical Engineering and Applied Physics at the Hebrew University of Jerusalem. Amir received his Ph.D. (2013) from the Electrical Engineering Department at the Technion, Israel where he worked in the fields of semiconductor laser physics and quantum optics. In 2013 Amir joined the Spintronics research group at the IBM Almaden Research Labs in California managed by Prof. Stuart Parkin and in 2016 he joined the Max Planck Institute for Microstructure Physics, Germany. Since 2017 Amir heads the Spintronics Lab at the Hebrew University. His team explores spin transport and magnetization dynamics for novel sensing, processing, and memory applications.

 

Daniel Garibi - Cross-Image Attention for Zero-Shot Appearance Transfer

סמינר מחלקת מערכות - EE Systems Seminar

29 במאי 2024, 15:00 
Electrical Engineering-Kitot Building 011 Hall  
Daniel Garibi - Cross-Image Attention for Zero-Shot Appearance Transfer

Electrical Engineering Systems Seminar

 

Speaker: Daniel Garibi

M.Sc. student under the supervision of Dr. Hadar Averbuch-Elor and Prof. Daniel Cohen-Or

 

Wednesday, 29th May 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

Cross-Image Attention for Zero-Shot Appearance Transfer

 

Abstract

Recent advancements in text-to-image generative models have demonstrated a remarkable ability to capture a deep semantic understanding of images. In this work, we leverage this semantic knowledge to transfer the visual appearance between objects that share similar semantics but may differ significantly in shape. To achieve this, we build upon the self-attention layers of these generative models and introduce a cross-image attention mechanism that implicitly establishes semantic correspondences across images. Specifically, given a pair of images ––– one depicting the target structure and the other specifying the desired appearance ––– our cross-image attention combines the queries corresponding to the structure image with the keys and values of the appearance image. This operation, when applied during the denoising process, leverages the established semantic correspondences to generate an image combining the desired structure and appearance. In addition, to improve the output image quality, we harness three mechanisms that either manipulate the noisy latent codes or the model's internal representations throughout the denoising process. Importantly, our approach is zero-shot, requiring no optimization or training. Experiments show that our method is effective across a wide range of object categories and is robust to variations in shape, size, and viewpoint between the two input images.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

Domain Adaptation and Super Resolution in Histopathology Using Deep Learning - Elad Yoshai

סמינר מחלקת מערכות - EE Systems Seminar

29 במאי 2024, 15:30 
Electrical Engineering-Kitot Building 011 Hall  
Domain Adaptation and Super Resolution in Histopathology Using Deep Learning - Elad Yoshai

Electrical Engineering Systems Seminar

 

Speaker: Elad Yoshai

M.Sc. student under the supervision of Prof. Natan T. Shaked

 

Wednesday, 29th May 2024, at 15:30

Room 011, Kitot Building, Faculty of Engineering

 

Domain Adaptation and Super Resolution in Histopathology Using Deep Learning

 

Abstract

Histopathology plays a pivotal role in medical diagnostics. In contrast to preparing permanent sections for histopathology, a time-consuming process, preparing frozen sections is significantly faster and can be performed during surgery, where the sample scanning time should be optimized. Super-resolution techniques allow imaging the sample in lower magnification and sparing scanning time. This thesis research presents a new approach to super resolution for histopathological frozen sections, with focus on achieving better distortion measures, rather than pursuing photorealistic images that may compromise critical diagnostic information. Our deep-learning architecture focuses on learning the error between interpolated images and real images; thereby it generates high-resolution images while preserving critical image details, reducing the risk of diagnostic misinterpretation. This is done by leveraging the loss functions in the frequency domain, assigning higher weights to the reconstruction of complex, high-frequency components. In comparison to existing methods, we obtained significant improvements in terms of Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR), as well as indicated details that lost in the low-resolution frozen-section images, affecting the pathologist’s clinical decisions. Our approach has a great potential in providing more-rapid frozen-section imaging, with less scanning, while preserving the high resolution in the imaged sample.

However, even though frozen sections are often used for rapid diagnosis during surgeries, as they can be produced within minutes, they suffer from artifacts and are generally missing details for diagnosis, specifically inside the cell nuclei region. On the other hand, permanent sections contain more details with diagnostic value but requires intensive process which takes hours of preparation. Therefore, in addition to the super-resolution we present a generative deep learning approach to convert frozen sections into permanent sections using a unique method that puts more attention on the nuclei regions, which are important for diagnosis. This is done by using a segmented attention network, incorporating nuclei-segmented images in the training process and an additional loss to push the network to improve the essential missing contents of the nuclei region in the generated permanent image. We tested our method on various tissues including kidney, breast, and colon. Our approach can significantly improve the histological efficiency and the accuracy and can be integrated in the existing laboratory workflows to generate permanent sections within seconds from frozen sections acquired rapidly.

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

enlightenedסטודנטים וסטודנטיות enlightened

מהיום לא צריך להסתבך יותר עם להגיע לוולפסונים  

יש אפליקציית ניווט חדשה שתיקח אתכם.ן ליעד ממממש מהר!

1. סורקים את קוד הQR המופיע על השלטים ברחבי הקמפוס

או נכנסים ל App Store או Google Play ומורידים את אפליקציית NAVIN  

2. מקלידים יעד

3. מנווטים ליעד בקלילות 

smiley

Dr. Nadav Cohen - DDR&D – Shaping the Future of Israeli Innovation

סמינר המחלקה לאלקטרוניקה פיזיקלית

 

 

30 במאי 2024, 11:00 
Room 011 Kitot Building  
Dr. Nadav Cohen - DDR&D – Shaping the Future of Israeli Innovation

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני ושלישי

ההרשמה מתבצעת לפני תחילת הסמינר

Prof. Ben Z. Steinberg - EE on a carousel: Rest frame electrodynamics of rotating systems, circuits, and structures

סמינר המחלקה לאלקטרוניקה פיזיקלית

 

 

23 במאי 2024, 11:00 
Room 011 Kitot Building  
Prof. Ben Z. Steinberg - EE on a carousel: Rest frame electrodynamics of rotating systems, circuits, and structures

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני ושלישי

ההרשמה מתבצעת לפני תחילת הסמינר

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>