EE Systems Seminar: Quantifying and Predicting Feature Learning in Deep Finite Neural Networks | Dr. Inbar Seroussi (TAU)

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

27 בדצמבר 2023, 15:00 
בניין כיתות חשמל, חדר 011  
EE Systems Seminar:  Quantifying and Predicting Feature Learning in Deep Finite Neural Networks | Dr. Inbar Seroussi (TAU)

(The talk will be given in English)

 

Speaker:       Dr. Inbar Seroussi,

Applied Mathematics Department, Tel Aviv University

011 hall, Electrical Engineering-Kitot Building

 

Wednesday, December 27th, 2023

 

15:00 - 16:00

 

Quantifying and Predicting Feature Learning in Deep Finite Neural Networks
Abstract

Deep neural networks (DNNs) are powerful tools for compressing and distilling information. Their scale and complexity, often involve billions of inter-dependent internal degrees of freedom, rendering direct microscopic analysis difficult. Several works have shown that the statistics and dynamics of DNNs drastically simplify in the infinite width limit and become analytically tractable. However, the infinite width limit misses out on several qualitative aspects, such as feature learning and the fact that real-world DNNs are not nearly as over-parameterized. This gap is particularly apparent in deep convolutional neural networks (CNNs). In this talk, I will present a novel mean-field theory for finite fully trained deep non-linear DNNs. Specifically, we show that DNN layers couple only through the second moment (kernels) of their post-activations and pre-activations. Moreover, in various settings, the latter fluctuates in a nearly Gaussian manner. For CNNs with infinitely many channels, these kernels are inert, while for finite CNNs they adapt to the data. In several deep non-linear CNN models trained on real data, the resulting thermodynamic theory of deep learning yields accurate predictions. In addition, it provides a new tool to analyze and understand CNNs, and DNNs in general. This is joint work with Gadi Naveh and Zohar Ringel, for more information see https://www.nature.com/articles/s41467-023-36361-y.

Short Bio

Inbar Seroussi is a postdoctoral fellow in the Applied Mathematics department at Tel Aviv University. Before that, she was a postdoctoral fellow in the Mathematics department at the Weizmann Institute of Science, hosted by Prof. Ofer Zeitouni. She completed her Ph.D. in the Applied Mathematics department at Tel-Aviv University under the supervision of Prof. Nir Sochen. During her Ph.D., she was a long-term intern at Microsoft Research (MSR). Her research interest is at the interface between machine learning, statistical physics, and high dimensional probability.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

EE Systems Seminar: Constrained system identification of reaction-diffusion equations: a bridge between control and inverse problems | Dr. Rami Katz (University of Trento)

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

25 בדצמבר 2023, 15:00 
בניין כיתות חשמל, חדר 011  
EE Systems Seminar: Constrained system identification of reaction-diffusion equations: a bridge between control and inverse problems | Dr. Rami Katz (University of Trento)

(The talk will be given in English)

 

Speaker:     Dr. Rami Katz  University of Trento

 

011 hall, Electrical Engineering-Kitot Building

 

Monday, June 25th, 2023

 

15:00 - 16:00

 

Constrained system identification of reaction-diffusion equations: a bridge between control and inverse problems

 

 

Abstract

System identification uses mathematical methods to reconstruct models of systems from partial and noisy data. The identification of reaction-diffusion (RD) systems is a mathematically intricate and significant research domain within systems and control, and finds application across diverse fields, spanning from multi-agent systems to chemical reactors. Many identification algorithms necessitate an infinite number of measurements and often fail to yield explicit bounds on recovery errors, in the presence of noise. In this talk, I will consider the problem of recovering the first dominant modes and initial condition of an unknown one-dimensional RD system from a finite set of filtered (noisy) state measurements. We demonstrate that Prony’s method for spike deconvolution, commonly applied in super-resolution problems, is suitable for solving this identification task. Moreover, building on recent results on the error sensitivity of Prony’s method, we derive new explicit identification guarantees, by analyzing the first-order condition numbers with respect to the measurement filtering error and showing their (super) exponential decay to zero in several identification regimes. The developed tools establish a hitherto unexplored connection between systems and control theory and inverse problems.

Joint with D. Batenkov from the School of Mathematics at Tel Aviv University.

Short Bio

Rami Katz is a post-doctoral researcher at the University of Trento, Italy. Rami recieved his B.Sc. and M.Sc in applied mathematics and his Ph.D. in electrical engineering from Tel Aviv University. He is the recipient of the KLA and Weinstein fellowships, as well as several excellence awards for both studies and teaching. He is an ECC21 best student paper award finalist and the recipient of the June 2020 editor's choice in Automatica. His research interests include control of nonlinear and distributed parameter system, systems biology and inverse problems in signal processing and control. 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

 

 

 

 

EE Systems Seminar: Water Pouring solutions for log loss rate distortion| Nitzan Katz

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

20 בדצמבר 2023, 15:00 
בניין כיתות-חשמל, חדר 011  
EE Systems Seminar: Water Pouring solutions for log loss rate distortion| Nitzan Katz

Electrical Engineering Systems Seminar

 

Speaker: Nitzan Katz

M.Sc. student under the supervision of Prof. Meir Feder

 

Wednesday, 20th December 2023, at 15:00

Room 011, Kitot Building, Faculty of Engineering

 

Water Pouring solutions for log loss rate distortion

 

Abstract

We analyze solutions to the rate distortion problem under the log-loss distortion measure. We generalize the water pouring solution procedure, used in the Gaussian rate distortion problem under the MSE measure. These water pouring solutions utilize a diagonalizing transformation, similar to the PCA transformation in the Gaussian-MSE case. We discuss the continuous case under log-loss, where we find optimization criteria for water pouring solutions, based on entropy power. We also show an approximate water pouring solution for the discrete case, and apply it for a common real life distribution: Zipf law.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A Brief History of Adaptation and learning | Prof. Alexander Fradkov (Institute for Problems of Mechanical Engineering of RAS and Saint Petersburg University)

סמינר זה יחשב כסמינר שמיעה לתלמידי תואר שני

20 בדצמבר 2023, 11:00 
חדר 011, בניין כיתות-חשמל  
A Brief History of Adaptation and learning | Prof. Alexander Fradkov (Institute for Problems of Mechanical Engineering of RAS and Saint Petersburg University)

(The talk will be given in English)

 

Speaker:     Prof. Alexander Fradkov 

Institute for Problems of Mechanical Engineering of RAS and Saint Petersburg University

 

011 hall, Electrical Engineering-Kitot Building

 

Wednesday, December 20th, 2023

 

11:00 - 12:00

 

A Brief History of Adaptation and learning

 

Abstract

Machine learning and artificial intelligence have attracted a lot of attention during recent years. They are applied to various  new problems and it looks like they are based upon completely new ideas in the applied science. However, there exist strong links between  machine learning and lassical adaptation methods which are much lesser known and almost not exploited nowadays.

In this talk a brief overview of the historical evolution of the machine learning field will be presented and its relations to adaptation, optimization and adaptive control will be discussed.

A number of little-known facts published in hard-to-reach sources are presented.

Short Bio

Alexander L. Fradkov received the Diploma degree in mathematics from Leningrad (currently St.Petersburg) State University in 1971, the Candidate of Sciences (Ph.D.) degree in technical cybernetics in 1975 from Leningrad Mechanical Institute, and the Doctor of Sciences (Habilitation) degree in control engineering in 1986 from Leningrad Electrotechnical University. He is currently the Head of the “Control of Complex Systems” Lab of the Institute for Problems in Mechanical Engineering of Russian Academy of Sciences and Professor of the Department of Theoretical Cybernetics at Saint Petersburg University.

Prof. Fradkov is the coauthor of more than 800 journal and conference papers, 18 books and textbooks, and a holder of ten patents. In his book "Cybernetical Physics" (Nauka, 2003; Springer-Verlag, 2007) an emerging boundary field between Physics and Control areas is pioneered. His research interests include nonlinear and adaptive and learning control, control of oscillatory and chaotic systems, dynamics and control of complex physical systems and networks. Prof. Fradkov was recipient of the best paper award from the Elsevier journal Annual Reviews of Control for 2020-2022. He is IEEE and IFAC.

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

 

עודכן בתאריך ה11.12.23

11 דצמבר 2023

סטודנטים.ות שותפים.ות יקרים.ות!

ימים מורכבים עוברים על מדינתנו ויחד עם זאת ולאחר התלבטות ממושכת של כלל אוניברסיטאות המחקר, הוחלט לפתוח את שנת הלימודים הקרובה בתאריך ה31.12.23.

 

מצ"ב הודעה רשמית מסגן ורקטור האוניברסיטה.

 

שנת הלימודים חולקה מחדש ותערך במתווה הבא:

סמסטר א' (11 שבועות של לימודים)

31.12.23 – 15.3.24

עונת בחינות סמסטר א' (7 שבועות)      

17.3.24 – 17.5.24

סמסטר ב' (11 שבועות)            

19.5.24 – 05.8.24

עונת בחינות סמסטר ב'/ סמסטר קיץ     

06.8.24 ואילך

פתיחת שנה"ל תשפ"ה                                                       

03.11.24

 

דחייה זאת של פתיחת שנה"ל זו נועדה להקל ולאפשר חזרה רגועה של כל הסטודנטים והסטודנטיות לספסל הלימודים. 

 

מאחלים לכולם ימים שקטים יותר, חזרה של כל החיילים החיילות והחטופים הבייתה בריאים ושלמים,

 

עם ישראל חי.

 

 

סמינר מחלקה של דריה אורלובה - הומוגניזציה לא ליניארית של רשתות אלסטיות אקראיות עם יישום על חומרים ביולוגיים סיביים

11 בדצמבר 2023, 14:00 - 15:00 
זום  
0
סמינר מחלקה של דריה אורלובה - הומוגניזציה לא ליניארית של רשתות אלסטיות אקראיות עם יישום על חומרים ביולוגיים סיביים

 

School of Mechanical Engineering Seminar
Monday December 11.12.2023 at 14:00

ZOOM SEMINAR

Nonlinear Homogenization of Random Elastic Networks with Application to Fibrous Biomaterials

 

Daria Orlova

PhD student under the supervision of Dr. Igor Berinskii

MultiScale Mechanics of Solids Group

School of Mechanical Engineering, Tel Aviv University, Israel

 

This study investigates the mechanical properties of random elastic networks inspired by the extracellular matrix (ECM). The ECM is a three-dimensional fibrous microenvironment that supports biological cells and facilitates their interactions. The mechanical characteristics of this supporting network significantly impact cellular behavior. Additionally, mechanical interactions between cells and their environment lead to substantial displacements, fiber reorientation, and, consequently, local anisotropy. The non-homogeneous and entangled microstructure of the matrix, composed of fibers that are randomly oriented and distributed in varying sizes, complicates its description using classical continuum models. Meanwhile, discrete models, which approximate the real microstructure in simulations, require substantial computational resources.

To address these complexities, we introduce a homogenization method for determining the effective properties and analyzing structural changes in the bio-inspired material. This method specifically examines how external stretching modifies material anisotropy. Incorporating both 2D and 3D models, along with experimental data, we employed both static and dynamic formulations. Our focus is on analyzing the effective elastic properties of networks with varying densities and compositions, based on a predefined random microstructure. Our numerical strategy employs boundary periodicity, and uniaxial and biaxial loading in a representative volume element (RVE) containing numerous randomly distributed elements to determine these properties. Systematic evaluations produced stress-stretch curves that correlate with hyperelastic models for networks at different connectivity levels.

These findings offer deeper insights into the mechanics of bio-inspired materials, emphasizing cellular interactions within matrices. Our computational approach to this micromechanics problem enables the prediction of multi-axial properties, which are typically challenging to determine experimentally. By employing homogenization, we not only reduce the computational demands for simulations but also simplify the modeling of complex fibrous structures. This facilitates the replication of diverse fibrous material behaviors in straightforward finite element models. Such simplification is crucial for effectively addressing mechanobiological issues at both the cellular and larger scale levels.

Our homogenization methodology extends beyond the specific bio-inspired material to a wide variety of similar materials and fabrics. This adaptability enables the investigation of a diverse class of materials, especially viscoelastic ones, by integrating their inherent viscous behavior into the matrix analysis.

 

Join Zoom Meeting

https://tau-ac-il.zoom.us/j/86497933118

Quantum electronics – resurrected - Prof. Aharon Blank ,Technion- Israel Institute of Technology סמינר מחלקה פיסיקלית

סמינר המחלקה לאלקטרוניקה פיזיקלית

 

04 בינואר 2024, 11:00 
011,Kitot Building  
Quantum electronics – resurrected - Prof. Aharon Blank ,Technion- Israel Institute of Technology    סמינר מחלקה פיסיקלית

 

The quest for high speed spatial light modulators - Dr. Sivan Trajtenberg Mills ,Massachusetts Institute of Technology (MIT) סמינר מחלקה פיסיקלית

סמינר המחלקה לאלקטרוניקה פיזיקלית

 

21 בדצמבר 2023, 11:00 
011,Kitot Building  
The quest for high speed spatial light modulators - Dr. Sivan Trajtenberg Mills ,Massachusetts Institute of Technology (MIT)    סמינר מחלקה פיסיקלית

 

SoC Design Verification Engineer, Google Cloud, University Graduate

Minimum qualifications:

  • Bachelor's degree in Electrical Engineering, Computer Engineering, or a related technical field of study, or equivalent practical experience.

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>