School of Mechanical Engineering John E. Dolbow

17 באוקטובר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206 
0
School of Mechanical Engineering John E. Dolbow

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, October 17, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Models and Simulations of the Surfactant-Driven

Fracture of Particle Rafts

 

John E. Dolbow

Professor of Civil and Environmental Engineering,

Mechanical Engineering and Materials Science,

and Mathematics

Duke University

 

When a densely packed monolayer of hydrophobic particles is placed on a uid surface

the particles interact through capillary bridges, leading to the formation of a particle raft or

\praft" for short. Densely packed monolayers exhibit a two-dimensional elastic response, and

they are capable of supporting both tension and compression. The introduction of a controlled

amount of surfactant generates a surface tension gradient, producing Marangoni forces and

causing the surfactant to spread, fracturing the monolayer. These systems are of interest to

materials scientists and engineers because they provide an idealized setting for investigating the

interplay between uid ow and fracture. Previous studies of the surfactant-induced fracture

of prafts have examined the role of viscosity and the initial packing fraction on the temporal

and spatial evolution of the fractures. The potentially important role of di_erences in surface

tension between the surfactant and the underlying uid has not been explored.

This seminar will describe a new continuum-based model and simulations that account for

the interplay between the pressure exerted by a spreading surfactant and the elastic response

of the praft, including the fracture resistance. This is e_ected through the use of a surfactant

damage _eld that serves as both an indicator function for the surfactant concentration, as well

as the damage to the monolayer. Stochastic aspects of the particle packing are incorporated into

the model through a continuum mapping approach. The model gives rise to a coupled system

of nonlinear partial di_erential equations, with an irreversibility constraint. We recast the

model in variational form and discretize the system with an adaptive _nite element method. A

comparison between model-based simulations and existing experimental observations indicates

a qualitative match in both the fracture patterns and temporal scaling of the fracture process.

Based on the model, we determine a dimensionless parameter that characterizes the ratio

between this driving force and the fracture resistance of the praft. Interestingly, while our

results indicate that the stochastic aspects of the packing are important to the fracture process,

we _nd that regimes of fracture are largely governed by di_erences in surface tension. Finally,

we support our _ndings with newly designed experiments that validate the model and con_rm

the trends inferred from the simulations.

 

 

 

 

 

אוניברסיטת תל-אביב, ת.ד. 39040, תל-אביב 6997801
UI/UX Basch_Interactive