סמינר מקוון עם אוהד זילביגר

 Ohad Silbiger

MSc student under the supervision of Dr. Yakir Hadad

 

 

20 במאי 2021, 13:00 
זום  
 One-way Acoustic Guiding in a Fluid with Mean Flow

 

 

אבסטרקט

 

 

 

In a moving acoustic medium, sound waves travel differently with and against the fluid flow. This well-established acoustic effect is backed by the intuition that the fluid velocity-bias imparts momentum on the propagating acoustic waves, thus violating reciprocity. Based on this conception, fluid flow that is transverse to the wave direction of propagation will not break reciprocity. In this work we contrast this common wisdom and theoretically show that the interplay between transverse mean flow and transverse structural gliding-asymmetry can yield strong nonreciprocity and even, surprisingly, one-way acoustic waveguiding. To demonstrate that, we analyze a waveguide that comprises of a few adjacent acoustic sub-diffraction chains, each consists of acoustic scatterers with monopolar or dipolar response. The structure is embedded in a fluid with mean flow velocity transverse to the waveguide axis. We find the symmetry breaking conditions under which nonreciprocity is obtained, and we show how under transverse mean flow, with Mach numbers as low as 0.02, one-way propagation of the acoustic wave is obtained on a sub-wavelength-thick acoustic waveguide.

As opposed to the case when the flow is transverse to the waveguide axis, nonreciprocity in a waveguide in longitudinal fluid flow is of no surprise. However, one-way guiding in this regime is not trivial. In the second part of this work we demonstrate this effect in a single sub-diffraction chain of dipoles, embedded in a medium with longitudinal mean flow with Mach number of 0.1.

Our results may open another venue for the design of nonreciprocal acoustic wave devices for various applications.

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

סמינר מקוון עם גל שטדנל

 Gal Shtendel

M.Sc. student under the supervision of Prof. Amir Averbuch and Prof. Menachem Nathan

 

 

18 במאי 2021, 14:00 
זום  
Improving the generalization of a snapshot spectral imaging system with system characterization,  and Deep-Learning based solutions

 

 

אבסטרקט

 

 

As part of the research field of Computational Imaging, Snapshot Spectral Imaging (SSI) systems aim to capture the 3-Dimensional (3D) spatial and spectral scene information using a co-design of hardware and software. So far, many efforts had been invested in developing optical systems that can capture such an encoded version of the scene information, and corresponding reconstruction algorithms for recovering a 3D hyperspectral “cube” (hyperspectral refers to spectral information of some approximately continuous wavelengths range) from the encoded measurements.

In line with this, our research group had previously demonstrated a cost-effective, portable, and simple SSI system that utilizes a single diffractive element (“diffuser”) and produces Dispersed and Diffused (DD) monochromatic images, which are encoded measurements of the scene.  

Recently, our group also presented a Machine-Learning based algorithms called “DD-Net”, that achieved state-of-the-art results for the reconstruction of HS cubes from the DD images. However, experiments showed that the recovery algorithms tend to be sensitive and unsatisfactory for data

that is significantly different than the data they were optimized on, in what being called the “Generalization problem” of data-driven solutions. In the case of supervised learning, this problem is present both in the data’s input samples domain and in the output labels domain, independently.

This thesis work focuses on decreasing the generalization error the system obtains, which is the error obtained from DD-Net evaluation on test datasets, without additional physical data acquisition process. Based on how the generalization problem manifests differently in the input and output algorithm’s domains, a slightly different approach was taken. 

The results of the two parallel research directions led to a significant contribution to the system's HS reconstruction quality, as well as important and beneficial insights regarding the system capabilities. As part of this work, we developed the “SHS-GAN”, which is a novel general-purpose, end-to-end framework for enlarging HS datasets based on RGB samples that can easily be adapted and contribute to a variety of HS-related tasks.

 

* A scientific paper describing the “SHS-GAN” implement and utilization will be soon published in: “IEEE Transactions In Computational Imaging” journal.

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

לבית הספר להנדסה מכנית- מהנדס/ת פרויקטים

ניסיון עשיר בניהול פרויקטים בתעשייה (רצוי פרויקטים בינתחומיים המערבים תחומי ידע, כגון: רובוטיקה, מכניקה, אופטיקה, זרימה, חשמל, אנרגיה, ביו-רפואה וכד').

תואר ראשון בהנדסה מכנית, יתרון לתואר שני. יכולת הנדסית מוכחת של מספר שנים בניהול פרויקטים.

ידע וניסיון בתחומים מגוונים, כגון: רובוטיקה, מכניקה, אופטיקה, זורמים, אווירודינמיקה, חשמל, אנרגיה וכד'.

כיצד אפשר לחקות התנהגות של חומרים מגנטיים לא יציבים על ידי גלי אור המתקדמים בגבישים מהונדסים? מחקר חדש של קבוצת חוקרים מהפקולטה להנדסה ומהטכניון פותח אפשרויות חדשות להעברה ועיבוד של מידע אופטי, ובפרט ליישומים בתחום התקשורת והמחשוב הקוונטיים.

  • תגיות:

החוקר.ת מאחורי המחקר

על מנת להבין את האנלוגיה לחומרים מגנטיים ניזכר תחילה כיצד מחט המצפן יודעת להצביע על כיוון הצפון. הסיבה לכך היא שהמחט היא מגנט קטן, והשדה המגנטי של כדור הארץ מפעיל עליה כוח וגורם לה "להתיישר" כך שהחץ של המחט יצביע על הצפון.

 

תופעה דומה יכולה להתרחש כאשר אלקטרונים נעים בחומר מגנטי. בדומה למחט המצפן, גם האלקטרון מתנהג כמו מגנט קטן הנקרא ספין, ולכן אפשר לשלוט בתנועתו באמצעות שדה מגנטי. מחקרים שנעשו בשנים האחרונות גילו אפשרויות מעניינות לשליטה בזרם האלקטרונים באמצעות מצבים חדשים של חומרים מגנטיים, הקרויים "סקירמיונים", שבהם יש סידור מיוחד של השדה המגנטי בצורה המזכירה קיפוד ששוכב על הבטן – כל קוץ בגבו של הקיפוד מייצג את כיוון המגנט במקום מסוים במרחב. האתגרים המשמעותיים במחקר של חומרים אלה היא ביכולתנו לייצר את הקיפודים המגנטיים על צורותיהם השונות והמיוחדות. מסתבר שדווקא המבנים המגנטיים המעניינים יותר נוטים להיות לא יציבים, וכל הפרעה קטנה גורמת להם להתפרק ולאבד את צורתם.

 

פריצת דרך חדשה בנושא זה הושגה במחקר בהובלת הדוקטורנט אביב קרניאלי ומנחה הדוקטורט שלו, פרופ' עדי אריה, מבית הספר להנדסת חשמל בפקולטה להנדסה באוניברסיטת תל אביב. במחקר, שנערך עם פרופ' גיא ברטל והדוקטורנט שי צסס מהפקולטה להנדסת חשמל ע"ש ויטרבי בטכניון, מתוארת דרך שבה אפשר לגרום לקרני אור להתנהג כמו אלקטרונים עם ספין ולגרום לחומרים עם תגובה אופטית להתנהג כמו חומרים מגנטיים. "מכיוון שקל הרבה יותר להנדס אור וחומרים אופטיים, אפשר יהיה לחקור באמצעותם את התכונות של החומרים המגנטיים," אומר פרופ' אריה. "ב-30 השנים האחרונות הצטבר ידע עצום בתכנון של התקנים וטכנולוגיות בתחום המידע המגנטי, ועכשיו אפשר יהיה לקחת את הידע הזה ולייצר באמצעותו התקנים אופטיים."

בתמונה: הדוקטורנט אביב קרניאלי 

 

במאמר בחרו החוקרים לתת דוגמה להתקן עתידי שכזה, המבוסס על "אפקט הול הטופולוגי" – אפקט קוונטי המתרחש כאשר חלקיק ספין חולף ליד אותם "קיפודים מגנטיים". "אפשר לחשוב על האפקט הזה כמו 'בעיטת בננה' בכדורגל," מסביר אביב קרניאלי. "חלקיק שנע ליד סקירמיון מגנטי מעקל את מסלולו כתלות בכיוון הספין שלו, שזה דבר מאוד יעיל אם רוצים להחליט לאן עובר זרם – כמו מתג. בחומרים מגנטיים אמיתיים לא יודעים איך לשלוט באפקט הזה, אלא רק לראות שהוא קיים, ואנחנו מראים איך באמצעות האור אפשר לחקות את אפקט הול הטופולוגי כדי לחקור אותו, אבל גם כדי להשתמש בו למתגים מהירים".

 

התגליות הללו צפויות לפרוץ דרך לא רק בהבנתנו את החומרים המגנטיים, אלא גם לתת השראה להתקנים אופטיים חדשים השולטים באור, בדומה לדרך בה חומרים מגנטיים שולטים בזרמים מגנטיים. לדוגמה, החוקרים מעריכים כי המחקר עשוי להוביל לפיתוח טכנולוגיות חדשות להעברה ועיבוד של מידע אופטי. נוסף על כך, היכולות הקיימות כיום לשליטה בחלקיקי אור בודדים – פוטונים – יחד עם הרעיונות החדשים לעיבוד המידע המבוססים על הקיפודים המגנטיים, צפויים לפתוח דלתות וכיווני מחשבה נוספים לעיבוד אינפורמציה קוונטית באמצעות אלומות אור. 

 

פרופ' אריה מוסיף שההתקנים שאפשר לייצר אינם מוגבלים רק לדברים פשוטים כמו מתגים. "אחד הכיוונים המבטיחים ביותר בטכנולוגיות קוונטיות הוא השימוש בחלקיקים בודדים של אור, או בשמם המדעי פוטונים, לייצוג מידע. ההתקנים שאנחנו מציעים לא יעבדו רק עבור קרני אור רגילות, אלא גם עבור פוטונים בודדים, ובאותה היעילות. מאחר שכיום, פוטונים בודדים הם בחזית הפיתוח של תקשורת קוונטית ומחשבים קוונטיים, יכול להיות שהתגלית שלנו תאפשר דרכים חדשות ויעילות יותר להעביר ולעבד מידע קוונטי בצורה אופטית."

 

המחקר נתמך ע"י הקרן הלאומית למדע. אביב קרניאלי ושי צסס הם זוכי מלגת אדמס של האקדמיה הלאומית למדעים. 

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

מחקר חדש של הדוקטורנט לשעבר רון שנפ, מבית הספר להנדסה מכנית בא לגשר על הניגוד החד המתקיים בין הזרימות האידאליות לבין הזרימות שמאפיינות את העולם האמיתי.

  • תגיות:

החוקרים.ות שמאחורי המחקר

מאז ראשית שנות ה-2000, אנו עדים להופעתו של גל מחקר אמפירי העוסק בזרימה טורבולנטית, הנובע מהתפתחותן של יכולות חישוביות ומערכות מדידה חדשניות. מבין הנושאים שהתפתחו באופן המשמעותי ביותר ניתן למנות את התיאור הלגראנז'י של טורבולנציה (מסגרת מתמטית לתיאור שדות זרימה), אשר במסגרתו התכונות הסטטיסטיות של הזורם מתוארת לאורך מסלוליהם של חלקיקי זורם אידיאליים.

 

להתפתחותה של המסגרת הלגראנז'יאנית יש השלכות מעשיות משמעותיות, וביניהן היכולת לתאר ולמדל הסעה ופיזור באופן טבעי יותר, בזכות המעקב אחר תנועת הזורם. אכן, פיתוחה של המסגרת הלגראנז’יאנית מסייע לפתרון בעיות כגון חיזוי התפשטותם של כתמי נפט בים, או ריכוז זיהום האוויר בסביבה העירונית ועוד. בהתאם לכך, גל המחקר החדש, אשר נעזר בניסויים ובסימולציות מורכבים שנערכו תחת תנאים אידיאליים, הוליד תגליות פורצות דרך בדבר המנגנונים השוכנים בליבה של הטורבולנציה, החל משבירת סימטריה ועד למורפולוגית שדה הזרימה בסקאלות שונות, החל מפיזור של קבוצות חלקיקים ועד לאינטרמיטיות של הסקאלות הקטנות וכן הלאה.

 

עם זאת, נראה כי ישנם גורמים אשר מקשים על יישומן של תגליות אלה לצורך פתרונן של בעיות אשר ניצבות בפני מהנדסים ב"עולם האמיתי". לרוב, מחקרים התמקדו בזרימות אידיאליות או "נקיות" מדי מכדי לייצג את הזרימות הקיימות בטבע ובתעשייה. באופן ספציפי, תכונותיהן הסטטיסטיות של הזרימות הנבדקות במחקרים האלה הן לרוב הומוגניות, איזוטרופיות ולא משתנות בזמן, מה שאינו נכון לגבי זרימה טורבולנטית המתקיימת מחוץ למעבדה. עקב הניגוד החד המתקיים בין הזרימות האידאליות לבין הזרימות שמאפיינות את העולם האמיתי, לא ברור אם ניתן ליישם את התגליות החדשות לשם פתרון אותן בעיות משמעותיות הניצבות בפני מהנדסים, או כיצד.

 

מגשרים בין שני העולמות

במחקר, ניסו החוקרים מהפקולטה להנדסה באוניברסיטת תל אביב בשיתוף עם החוקרים מהמכון הביולוגי ד״ר ירדנה רביב-בוחבוט וד״ר אייל פטל, לגשר על הפער בין שני העולמות האלה. "לשם כך, ערכנו מדידות לגראנז'יאניות בזרימה שמחקה את חלקה התחתון של שכבת הגבול האטמוספרית, אזור בו מתרחשת אינטראקציה בין הזרימה ובניינים או עצים, בתוך מנהרת רוח סביבתית גדולה" מסביר רון.

מנהרת הרוח הסביבתית במכון הביולוגי

בתמונה: מנהרת הרוח הסביבתית במכון הביולוגי

 

המדידות, שבוצעו תוך שימוש במערכת מדידה חדשנית שפותחה במעבדה לחקר מבנה זרימה טורבולנטית של פרופ' אלכס ליברזון, מהוות מאגר מידע חסר תקדים. תכונותיה של הזרימה הזאת, המכונה זרימת קנופי (canopy flow), הן מאוד לא הומוגניות ולא איזוטרופיות, ולכן היא היוותה עבורנו קרקע פוריה כדי לבחון את תוקפן של התגליות החדשות. מוסיף ומסביר רון "למרבה ההפתעה, תוצאות הניסוי שלנו חשפו את קיומו של עולם פנימי נוסף - למרות שזרימת הקנופי שלנו הייתה כלל לא הומוגנית ולא איזוטרופית, הבחנו שכשאנו מצמצמים את טווח הסקאלות שאותן אנו בוחנים (על ידי בחינת השינויים החלים במהירות הזורם במקום המהירות עצמה), התכונות הסטטיסטיות הלגראנז'יאניות של הזרימה נראות כהומוגניות ואיזוטרופיות בקירוב טוב. כל בדיקה שערכנו איששה את התגלית שלנו, גם עבור חלקיקים בודדים וגם עבור קבוצות של חלקיקים הנעים בו-זמנית. התכונה הזאת של הזרימה, שנקראת איזוטרופיה לוקאלית, היא בעלת חשיבות מכרעת לאופן שבו אנו מבינים את הדינמיקה הלגראנז'יאנית בזרימות לא אידיאליות. למעשה, התגלית שלנו מוכיחה כי הממצאים שעלו מניסויים שבחנו זרימות "נקיות" במעבדה תקפים גם לזרימות מסוימות בעלות טורבולונציה חזקה המתקיימות בעולם האמיתי".

 

פרסומים בכתב עת

"לאחרונה, כתב העת "Journal of  Fluid Mechanics" הכיר בחשיבותן הרבה של התגליות שלנו, ועסק בהן בהרחבה במסגרת מדור "Focus on Fluids" [1]. בנוסף לכך, המחקר שלנו מהווה את אותו גשר אשר חיפשנו ומספק בסיס לפתרון בעיות מורכבות כמו חיזוי התפשטותם של זיהום אוויר או פתוגנים באטמוספרה, ומכאן נובע ערכו האמיתי" מסכם רון.

 

מי אתה רון?

רון שנפ סיים לא מזמן דוקטורט במעבדה של פרופ' אלכס ליברזון במסלול דוקטורט ישיר (ממסלול מסטר ישיר ואחרי הצטיינות דקאן רב שנתית). היום הוא פוסטדוק במכון ויצמן. זכה לאחרונה במלגת רוטשילד ונוסע לציריך לפוסטדוק יוקרתי ב ETH Zurich

 

"לאחרונה פרסמנו מספר מאמרים משמעותיים בנושא של זרימה אוויר באזורים עירוניים, בשיתוף עם המכון הביולוגי לישראל. למכון יש מנהרת רוח סביבתית חדשה ואנחנו גאים להיות הראשונים שמבצעים שם ניסויים. חשוב לציין כי המחקר נתמך על ידי קרן פזי של הועדה לאנרגיה אטומית. אבל כל זה רק הרקע לסיפור - רון פרסם לאחרונה מאמר של מחבר בודד בעיתון הכי חשוב בתחום "מכניקת זורמים" במסלול המהיר שלהם rapidsזהו כבוד גדול לאחד מהבוגרים המוצלחים שלנו בתחום מחקר מאד משמעותי לאיכות חיינו ולשינוי האקלים" מסכם בגאווה פרופ' ליברזון. 

 

קישורים למאמרים

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>