סמינר המחלקה להנדסה ביו-רפואית

14 במרץ 2021, 14:00 
zoom  
ללא עלות
סמינר המחלקה להנדסה ביו-רפואית

סמינר המחלקה להנדסה ביו-רפואית

07 במרץ 2021, 14:00 
zoom  
ללא עלות
סמינר המחלקה להנדסה ביו-רפואית

סמינר המחלקה להנדסה ביו-רפואית

17 בינואר 2021, 10:20 
zoom  
ללא עלות
סמינר המחלקה להנדסה ביו-רפואית

סמינר מחלקתי למסטרנטים

zoom:

~~https://us02web.zoom.us/j/83306241179?pwd=R0pVVU1JTVQyd3FRR3gxNzFRcU5sQT09

 

Artificial intelligence identifies a modest influence of character and emotions on blood glucose in type 1 diabetes 

Gon Shoham, MD*1,2, Roy Eldor, MD, PhD2,3, Irit Hochberg, MD4,5, Ran Gilad-Bachrach, PhD 1

 

Introduction
People with T1DM and their healthcare providers perceive that mood and sleep quality influence blood glucose (BG). Artificial pancreas algorithms use only BG estimates to predict future BG and determine insulin requirements. We aimed to improve the understanding of the effect of emotional states and personality on temporal BG changes using machine learning.

Methods
Patients with T1DM using continuous glucose monitoring (CGM) completed questionnaires on demographic, socioeconomic and medical information and personality characteristics. For several days, using a mobile app, patients recorded their present valence, arousal state and sleep quality. The data was synced with patient CGM readings and evaluated using gradient boosting decision tree (GBDT) over 5-fold cross-validation. Area under the receiver operating characteristic curve (AUROC) and marginal contribution were used to determine model feature importance. BG was divided into three classes: normal (70-180), high (>180), low (<70). For normal BG values, models were trained to predict BG class in the next 15, 30, and 45 minutes.

Results
A total of 64 participants (age 4815 years SEM, years of T1D 1813, 59% women) from two medical centers participated for 17.315.2 SEM days, each reporting valence and arousal 5653 times. Models using personality and emotional features to predict future BG outperformed models using only BG, albeit by a small margin. Following BG and time-of-day features, both neuroticism and arousal were found to be predictive. Neuroticism levels and sleep were significantly different between participants with HbA1c values under 7.6% and over 9.5%. (p=0.001, p=0.02, respectively).

 

Department of Biomedical Engineering Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel

2 Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel

Diabetes Unit, Institute of Endocrinology, Metabolism and Hypertension, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

Institute of Endocrinology, Diabetes and Metabolism, Rambam Health Care Campus, Haifa, Israel

5 Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Haifa, Israel

 

 

Quantifying Chorea, Daily-Living Physical Activity and Gait from a Wrist-Worn Accelerometer in Patients with Huntington’s Disease

 

Huntington's Disease (HD) is a progressive neurodegenerative, inherited disorder that leads to a combination of motor, cognitive, and behavioral symptoms. Over time, HD progresses to a state of severe hypokinesia and dementia. Chorea, one of the most common HD motor symptoms, is a hyperkinetic movement disorder that is characterized by excessive spontaneous movements that are irregularly timed, randomly distributed, and abrupt. Chorea severity is commonly assessed using a clinical test, i.e., subitems of the Unified-Huntington's Disease Rating Scale (UHDRS). However, this test is limited by inter-and interrater variability, subjective error, and its categorical design. Therefore, the first aim of this project was to objectively identify chorea-like movements using a wearable sensor. The second aim of this work is to quantify daily-living walking. Healthy gait requires a balance between various neuro-physiological systems and is considered an important indicator of a subject’s physical and cognitive health status. Previous work has generally relied on self-report to quantify walking in HD. Accurate measurement of daily-living walking of  HD patients, which takes into account involuntary movements (e.g. chorea), for evaluating the quantity and quality of gait are needed. Our work addresses these needs by leveraging a wrist-worn accelerometer worn for 7 days. In this seminar, I will describe the signal processing methods that I developed to automatically identify irregular movements, daily-living walking, and gait quality from a wrist-worn device. Initial results indicate that irregular movements are much more common in patients with HD than in healthy controls, that daily-living walking quantity and quality are reduced in patients, and that the extracted measures are associated with clinical tests, supporting their validity.

RV Strain Classification from Volumetric CTPA scans using an Enhanced 3D DenseNet with Residual Attention Blocks

By Noa Cahan

Pulmonary embolism (PE) is a life-threatening condition, often without warning signs or symptoms. Early diagnosis and accurate risk stratification are critical for decreasing mortality rates. High-risk PE relies on the presence of right ventricular (RV) dysfunction resulting from acute pressure overload.PE severity classificationand specifically, high-risk PE diagnosis are crucial for the planning of appropriate therapy. Computed tomographypulmonary angiography (CTPA) is the golden standard in the diagnostic workup of suspected PE. Therefore, it can link between diagnosis and risk stratification strategies.

In this work, we address the problem of RV strain classification from 3D volumetric CTPA scans.
We retrieved data of consecutive patients who underwent CTPA and were diagnosed with PE and extracted a single binary label of “RV strain biomarker” from the CTPA scan report. This label was used as a weak label for classification. Our solution applies a 3D DenseNet network architecture, further improved by integrating residual attention blocks into the network’s layers. This model achieved an area under the receiver operating characteristic curve(AUC) of 0.88 for classifying RV strain, a sensitivity of 87% and specificity of 73.47%. Our solution outperformsstate-of-the-art 3D CNN networks. The proposed design allows for a fully automated network that can be trainedeasily in an end-to-end manner without requiring computationally intensive and time-consuming preprocessingor strenuous labeling of the data.
This current solution demonstrates that a small dataset of readily available unmarked CTPAs can be used for effective RV strain classification and later on for PE risk stratification.

To our knowledge, this is the firstwork that attempts to solve the problem of RV strain classification from CTPA scans and this is the first workwhere medical images are used in such an architecture. Our generalized self-attention blocks can be incorporated into various existing classification architectures making this a general methodology that can be applied to 3D medical datasets.

Under the instruction of Prof. Hayit Greenspan

Efficient Information Coding Over Living Organisms
Alon Akiva, B.Sc.
Department of Electrical Engineering, Faculty of Engineering,
Tel Aviv University, Israel

Encoding information over the genome of living organisms is a fundamental problem with various applications in synthetic biology such as biosensors, biological treatments and very long term storage. In addition, this topic is important for understanding fundamental aspects in molecular evolution and genetics.
This topic is specifically challenging due to the fact that living organisms constantly undergo evolution that can cause deletion and corruption to the encoded information. Unlike artificial gene synthesis, in which virtually any DNA sequence can be synthesized, DNA synthesis in living cells imposes different mechanisms of data corruption, and requires new sophisticated analysis methods. The aim of this research is to study the problem of information coding over living organisms from a digital communication system perspective.
We start by modelling the living organism as a discrete communication channel, in a way that captures the major biological phenomena, and derive the channel capacity for the model as a function of those major biological parameters. Then, we use computational molecular evolution approaches in order to estimate those important biological parameters. Next, we present a coding scheme which allows reliable communication over this channel, and analyze its performance. The design goals of the coding scheme is efficiency (in terms of storage density), flexibility (in terms of scalability and minimization of environment dependency), and decoder simplicity (in terms of minimal side information needed). To evaluate our approach we performed numerical simulations over real genomic data based on some micro organism models. The simulations include random channel behaviour based on parameters estimations from evolutional models and genomic data. In addition, we design an experimental framework for evaluating our models.

 

 

סמינר המחלקה להנדסה ביו-רפואית

10 בינואר 2021, 14:00 
zoom  
ללא עלות
סמינר המחלקה להנדסה ביו-רפואית

סמינר מחלקתי לדוקטורנטים

zoom:

~~https://us02web.zoom.us/j/83306241179?pwd=R0pVVU1JTVQyd3FRR3gxNzFRcU5sQT09

סמינר המחלקה להנדסה ביו-רפואית

03 בינואר 2021, 14:00 
zoom  
ללא עלות
סמינר המחלקה להנדסה ביו-רפואית

sTAUbility: an Innovative Approach to Increase the Genetic Stability of Heterologous Genes
 

To be presented by IGEM Team TAU Israel 2020:

Karin Sionov¹, Matan Arbel¹, Itamar Menuhin¹, Doron Naki¹,Niv Amity¹, Bar Glickstein¹ ,Omer Edgar¹, Noa Kraicer¹, Itai Katzir¹, Einav Saadia¹, David Kenigsberger¹, Hadar Ben Shoshan¹, Dan Alon², Adi Yanai², and Prof. Tamir Tuller³.

¹iGEM Student Team Member, ²iGEM Team Mentor, ³iGEM Team Primary PI.

Abstract

A key challenge in the field of synthetic biology is genomic instability of introduced genes. Once a gene is inserted into a host organism, it can cause an additional metabolic load, significantly reducing host fitness. Mutations that damage the introduced gene are therefore likely to be selected for, diminishing its expression. These mutations could render synthetic-biology products obsolete and require constant maintenance. We propose interlocking a target gene to the N-terminus of an essential gene in the host’s genome, under the same promoter. This way, mutations on the target gene are likely to affect the expression of the essential gene, leading to mutated host mortality. We are developing a software called sTAUbility, that would match the best-fitting essential gene and linker to a given target gene, based on bioinformatic models and novel approaches for measuring stability. Furthermore, sTAUbility optimizes the combined construct for efficient gene expression and increased stability.

zoom : ~~https://us02web.zoom.us/j/83306241179?pwd=R0pVVU1JTVQyd3FRR3gxNzFRcU5sQT09

 

גישה חדשנית להגברת היציבות הגנטית של גנים הטרולוגיים

מציגים- צוות IGEM  מאוניברסיטת תל אביב :

קרין סיונוב, ניב עמיתי, הדר בן שושן,  נועה קרייצר,  בר גליקשטיין, איתמר מנוחין, מתן ארבל, דורון נאקי, עומר אדגר, איתי קציר, דויד קניגסברגר, עינב סעדיה.

תקציר:

אתגר מרכזי בתחום הביולוגיה הסינתטית הוא חוסר יציבות גנומית של גנים שהוכנסו. ברגע שמכניסים גן לאורגניזם מארח, הוא יכול לגרום לעומס מטבולי נוסף, ולהפחית משמעותית את כושר המארח. לכן ניתן לבחור במוטציות הפוגעות בגן שהוצג, מה שמקטין את ביטויו. מוטציות אלו עלולות להפוך את המוצרים הביולוגיים הסינטטיים למיושנים ודורשים תחזוקה מתמדת. אנו מציעים לשלב גן יעד לקצה N של גן חיוני בגנום של המארח, תחת אותו מקדם. בדרך זו, מוטציות בגן עשויות להשפיע על הביטוי של הגן החיוני, ולהוביל לתמותה של המוטציה. אנו מפתחים תוכנה הנקראת sTAUbility, שתתאים את הגן החיוני והמתאים ביותר לגן יעד נתון, המבוססת על מודלים ביואינפורמטיים וגישות חדשניות למדידת יציבות. יתר על כן, sTAUbility מייעל את המבנה המשולב לביטוי גנים יעיל וליציבות מוגברת.

זום: ~~https://us02web.zoom.us/j/83306241179?pwd=R0pVVU1JTVQyd3FRR3gxNzFRcU5sQT09

 

מחקר חדש מאוניברסיטת סטנפורד היוקרתית קבע: 12 מחברות וחברי סגל המחלקה למדע והנדסה של חומרים באוניברסיטת תל אביב נמנים עם החוקרות והחוקרים המובילים בעולם בתחומים השונים.

20 דצמבר 2020
פרופ' נעם אליעז ב- 0.62% העליונים לאורך קריירה
פרופ' נעם אליעז נמנה ב - 0.62% העליונים לאורך הקריירה

הרשימה המלאה כוללת כ- 160,000 חוקרות וחוקרים מ- 22 ענפים מדעיים ו- 176 תת-תחומים ומבוססת על ניתוח מאמרים וציטוטים שלהם ממאגר הנתונים Scopus, הן לאורך קריירה עד סוף שנת 2019 (2% עליונים) והן בשנה קלנדרית אחת (2019).

 

מקרב סגל הליבה, פרופ' נעם אליעז ב- 0.62% העליונים לאורך קריירה וב- 0.29% העליונים בשנת 2019 בתת-תחום חומרים; פרופ' אמריטוס נאוה סתר ב- 0.23% ו- 0.55% העליונים, בהתאמה, בתת-תחום פיזיקה יישומית.

 

מקרב הסגל בהשתייכות משנית, פרופ' דב שרמן ב- 1.62% העליונים לאורך קריירה בתת-תחום חומרים; פרופ' יוסי שחם ופרופ' יוסי רוזנוקס ב- 0.86% ו- 1.97% העליונים, בהתאמה, לאורך קריירה בתת-תחום פיזיקה יישומית;  פרופ' דן פאר ב- 0.39% ו- 0.39% העליונים, בהתאמה, פרופ' פרננדו פטולסקי ב- 0.63% ו- 2.51% העליונים, בהתאמה, פרופ' גיל מרקוביץ ב- 1.69% העליונים לאורך קריירה, ופרופ' טל דביר ב- 2.47% העליונים בשנת 2019 בתת-תחום ננו-מדע וננו-טכנולוגיה; פרופ' אהוד גזית ב- 0.32% ו-  0.14% העליונים, בהתאמה, בתת-תחום ביוכימיה וביולוגיה מולקולרית; פרופ' מיטל זילברמן ב- 1.84% ו- 2.27% העליונים, בהתאמה, בתת-תחום הנדסה ביו-רפואית; פרופ' ראמי חג'-עלי ב- 1.29% העליונים לאורך קריירה בתת-תחום הנדסה מכנית.

 

זוהי עדות נוספת למצויינות המדעית ולרב-תחומיות של המחלקה למדע והנדסה של חומרים באוניברסיטת תל אביב.

 

למאמר המחקר:
https://lnkd.in/dKnp7Y4

לכתבה באתר האוניברסיטה:
https://bit.ly/3nvHBKZ

לכתבה ב Israel Hayom ישראל היום:
https://lnkd.in/d9DMc95

 

Senior Algorithm Developer

  • M.Sc. graduate (or above) in Electrical Engineering / Physics / Computer Science / Mathematics.
  • Have theoretical and hands-on experience (3+ years) in at least one of the following: Computer Vision, Image Processing, Machine Learning, Detection.
  • Strong understanding of probability and statistics.
  • Able to work independently as well as part of a team.

סמינר המחלקה להנדסת תעשייה

22 בדצמבר 2020, 14:00 
ZOOM  
ללא עלות
סמינר המחלקה להנדסת תעשייה

~~Multi-Session Appointment Scheduling with Heterogeneous Clients
Reut Noham
post-doctoral fellow at the Department of Industrial Engineering and Management Sciences at Northwestern University

Abstract:
Clients seeking paramedical therapies and rehabilitation services generally attend frequent appointments over an extended period. Motivated by an early intervention program that provides therapeutic services to infants and toddlers with developmental delays and disabilities, we study scheduling policies that are designed to meet the needs of heterogeneous clients and the operational considerations of the providers. The clients can be heterogeneous in many dimensions: availability and preferences over time, length of service needed, and urgency of need. We aim to better understand how the different ways a provider may prioritize these factors influence scheduling decisions.
The early childhood years present a critical time window in which brain plasticity intensify children's ability to learn new skills. Studies have shown that for a wide range of conditions known to adversely affect developmental progress, such as Cerebral palsy, Down syndrome, or Autism, early intervention makes greater improvements than interventions at later age. Our work is grounded in a partnership with a non-profit organization that provides early intervention services in the Chicagoland area. The non-profit organization matches clients to providers to best meet the clients' needs and the availability of providers.  In this talk, I present our analysis of the single provider problem and discuss extensions to the multi-provider setting.
The problem of assigning clients to available days and time slots of the service provider is described as a Markov Decision Process. Clients are assigned sequentially, and only probabilistic knowledge of future clients is known. Given the characteristic of the client and the availability of the provider, our model determines which client requests (specifying day and slot) the service provider should accept in line with a specified prioritization of the provider. We characterize the structural properties of optimal scheduling decisions under idealized conditions. We then use these properties to develop a heuristic for general cases. We evaluate the performance of this heuristic relative to intuitive rule-of-thumb heuristics. Ultimately, we show that designing dynamic scheduling policies balances the many considerations involved in these scheduling decisions, specifically decreasing the number of rejected requests and improving health outcomes while maintaining high service providers' utilization.
*Joint work with Dr. Karen Smilowitz
 
Bio:
Reut Noham is a post-doctoral fellow at the Department of Industrial Engineering and Management Sciences at Northwestern University. She received her Ph.D. degree in Industrial Engineering from Tel-Aviv University in 2019. Her research interests include supply chain management and logistics with a focus on humanitarian supply chains, healthcare systems, and non-profit optimization. In her current research, she focuses on dynamic models for solving complex operational problems in collaboration with practitioners. Her research is supported by the Tel Aviv -Northwestern Post-Doctoral Fellowship, and the Eric and Wendy Schmidt Postdoctoral Award for Women in Mathematical and Computing Sciences.
 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>