חלוקת פרסי מכון וינשטין לשנת תשפ"ד

30 באוקטובר 2024, 16:45 
אולם 001 בנין ברודקום  
חלוקת פרסי מכון וינשטין לשנת תשפ"ד

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

EE Seminar: Camera Spoofing via the in-Vehicle IP Network

27 בנובמבר 2024, 15:00 
אולם 011  
EE Seminar: Camera Spoofing via the in-Vehicle IP Network

Electrical Engineering Systems Seminar

 

Speaker: Dror Peri

M.Sc. student under the supervision of Prof. Avishai Wool

 

Wednesday, 27th November 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

Camera Spoofing via the in-Vehicle IP Network

 

Abstract

Autonomous driving and advanced driver assistance systems (ADAS) rely on cameras to control driving. In many prior approaches an attacker aiming to stop the vehicle had to send messages on the specialized and better-defended CAN bus. We suggest an easier alternative: manipulate the IP-based network communication between the camera and the ADAS logic, inject fake images of stop signs or red lights into the video stream, and let the ADAS stop the car safely. We created such an attack tool that successfully exploits the GigE Vision protocol.

Then we analyze two classes of passive anomaly detectors to identify such attacks: protocol-based detectors and video-based detectors. We implemented multiple detectors of both classes and evaluated them on data collected from our test vehicle and on data from the public BDD corpus. Our results show that such detectors are effective against naive adversaries, but sophisticated adversaries can evade detection.

Finally, we propose a novel class of active defense mechanisms that randomly adjust camera parameters during the video transmission and verify that the received images obey the requested adjustments. Within this class we focus on a specific implementation, the width-varying defense, which randomly modifies the width of every frame. Beyond its function as an anomaly detector, this defense is also a protective measure against certain attacks: by distorting injected image patches it prevents their recognition by the ADAS logic. We demonstrate the effectiveness of the width-varying defense through theoretical analysis and by an extensive evaluation of several types of attack in a wide range of realistic road driving conditions. The best the attack was able to achieve against this defense was injecting a stop sign for a duration of 0.2 seconds, with a success probability of 0.2%, whereas stopping a vehicle requires about 2.5 seconds.

 

דןעהשתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

EE Seminar: Statistical Graph Signal Processing with Applications to Smart Grids

11 בנובמבר 2024, 12:00 
אולם 011  
EE Seminar: Statistical Graph Signal Processing with Applications to Smart Grids

(The talk will be given in English)

 

Speaker:     Prof. Tirza Routtenberg

                               Department of Electrical and Computer Engineering, Ben Gurion University 

 

011 hall, Electrical Engineering-Kitot Building‏

Monday, November 11th, 2024

12:00 - 13:00

 

Statistical Graph Signal Processing with Applications to Smart Grids

 

Abstract

Graphs are fundamental mathematical structures that are widely used in various fields for network data analysis to model complex relationships within and between data, signals, and processes. In particular, graph signals arise in many modern applications, leading to the emergence of the area of graph signal processing (GSP) in the last decade. GSP theory extends concepts and techniques from traditional digital signal processing (DSP) to data indexed by generic graphs, including the graph Fourier transform (GFT), graph filter design, and sampling and recovery of graph signals. However, most of the research effort in this field has been devoted to the purely deterministic setting. In this study, we consider the extension of statistical signal processing (SSP) theory by developing graph SSP (GSSP) methods and bounds. Special attention will be given to the development of GSP methods for monitoring the power systems, which has significant practical importance, in addition to its contribution to the enrichment of theoretical GSSP tools. In particular, we will discuss the following problems (as time permits): 1) Bayesian estimation of graph signals in non-linear models; 2) the identification of edge disconnections in networks based on graph filter representation; 3) the development of performance bounds, such as the well-known Cramér-Rao bound (CRB), on the performance in various estimation problems that are related to the graph structure; 4) the detection of false data injected (FDI) attacks on the power systems by GSP tools; 5) Laplacian learning with applications to admittance matrix estimation. The methods developed in these works use GSP concepts, such as graph spectrum, GSP, graph filters, and sampling over graphs.

Short Bio

Tirza Routtenberg is an Associate Professor at the School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Israel. She received her B.Sc. from the Technion in 2005, and her M.Sc. and Ph.D. in Electrical Engineering from Ben-Gurion University in 2007 and 2012, respectively. From 2012 to 2014, she was a Postdoctoral Fellow at Cornell University, and in 2022–2023, she served as the William R. Kenan, Jr. Visiting Professor for Distinguished Teaching at Princeton University. Her research interests include statistical signal processing, estimation and detection theory, signal processing on graphs, and applications in smart grids. She has received several awards, including the Toronto Prize for Excellence in Research in 2021 and four Best Student Paper Awards coauthor at international IEEE conferences.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בטופס הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

EE Seminar: Batch Estimators for Regression Problems

10 בנובמבר 2024, 15:00 
אולם 011, בניין כיתות-חשמל  
EE Seminar: Batch Estimators for Regression Problems

Electrical Engineering Systems Seminar

Speaker: Inbar Hasidim

M.Sc. student under the supervision of Prof. Ofer Shayevitz & Prof. Meir Feder

 

Sunday, 10th November 2024, at 15:00

Room 011, Kitot Building, Faculty of Engineering

Batch Estimators for Regression Problems

Abstract

In various machine-learning scenarios, algorithms that divide data into batches are widely used. Separating the data to batches is often used because of computational constraints and to improve generalization. A common technique of calculating an estimator using batch partitioning is to calculate the estimator for each batch and then merge them by simple averaging. This method collapses for batch sizes that are not linear with the number of samples. To address the problem, our research introduces two novel algorithms that combine the batch estimators using a different approach. We examine these batch partitioning algorithms within the context of an overparameterized linear regression model with isotropic Gaussian features. We present lower and upper bounds for one of the estimators and employ a series of extensive numerical experiments on both of them aimed at elucidating their performance characteristics and behavior across diverse scenarios.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

EE Seminar: Dense 5G Backhaul Network Planning, Including: Routing, Frequency/Power Assignment, and Fault Tolerance

06 בנובמבר 2024, 15:30 
אולם 011, בניין כיתות-חשמל  
EE Seminar: Dense 5G Backhaul Network Planning, Including: Routing, Frequency/Power Assignment, and Fault Tolerance

Electrical Engineering Systems Seminar

 

Speaker: Elad Fisher

M.Sc. student under the supervision of Prof. Guy Even

 

Wednesday, 6th November 2024, at 15:30

Room 011, Kitot Building, Faculty of Engineering

 

Dense 5G Backhaul Network Planning, Including: Routing, Frequency/Power Assignment, and Fault Tolerance

 

Abstract

My thesis deals with the problem of designing a wireless backhaul network for dense 5G networks. The task of designing a backhaul network involves routing and assignment of frequencies as well as assigning transmission powers to links. In addition, we consider the problem of designing a backhaul network that is resilient to single-link and single-base station failures. The objectives of the backhaul design problem are to minimize the number of frequency bands used in the frequency assignment as well as minimize the number of antenna pairs (each antenna pair can support two anti-parallel links).

As the baseline algorithm for backhaul design, we consider: (1) an algorithm that performs routing based rounding of a solution to a min-cost multi-commodity flow problem, and (2) an algorithm that assigns frequencies to links using a greedy first-fit algorithm.

In the thesis, we experiment with various options to modify the linear program that solves the multi-commodity flow problem by adding integer constraints, resulting in a mixed-integer linear programming problem.

The fractional solutions of the optimization problems are rounded to obtain a routing.

Based on the mixed-integer linear program, we present a routing algorithm that reduces the number of antenna pairs used. Additionally, we introduce two iterative algorithms that alternate between routing and frequency assignment. One of these algorithms reduces the number of frequency bands used by iterating between routing using the min-cost multi-commodity flow linear program and assigning frequencies using the greedy first-fit algorithm, while adjusting link costs between iterations. The second algorithm reduces the number of frequency bands and antenna pairs used by iterating between routing and assigning frequencies using the greedy first-fit algorithm, while adding integer constraints for sets of links with high interference among them.

We present two algorithms that provide tolerance to single-link failures. We experiment with the effect of using our routing/iterative algorithms on the objectives. Our experiments demonstrate that our algorithms compared to the baseline, on average, reduce the number of frequency bands by 15% or reduce the number of antenna pairs by 5%.

In our experiments, our algorithms design a backhaul network with 91-231 base stations and 9-25 gateways within an hour.

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

 

 

 

EE Seminar: Topics in Universal Learning

04 בנובמבר 2024, 12:00 
אולם 011, בניין כיתות-חשמל  
EE Seminar: Topics in Universal Learning

Electrical Engineering Systems Seminar

 

Speaker: Yaniv Fogel

Ph.D. student under the supervision of Prof. Meir Feder

 

Monday, 4th November 2024, at 12:00

Room 011, Kitot Building, Faculty of Engineering

Topics in Universal Learning

 

Abstract

We study statistical learning through the lens of information theory, using tools and methods established in the field of universal prediction. We focus on batch learning, where a training set of data features and corresponding outcomes are given, and the learner is tasked with predicting another outcome given a data feature. The prediction is measured using the logarithmic loss function, and is compared in some manner to an hypothesis class that consists of possible conditional probabilities of outcomes given the data features.

First, we consider the stochastic, realizable setting, where the outcomes are generated according to one of the hypotheses in the class. We show an equivalent of the Redundancy-Capacity Theorem, and utilize it to derive a general upper-bound over the regret. For Bernoulli hypothesis class we establish theoretical characterization of the min-max optimal learner. We propose and implement a variant of the Arimoto-Blahut algorithm to calculate the capacity-achieving prior and min-max optimal learner

We then consider the individual setting where the outcome sequence is deterministic, arbitrary. As noted by previous works, it is challenging to define an individual batch learning problem. We consider three possible definitions: The first two lead to min-max optimal learners which are known variants of the NML. We show that these learners obtain favorable results for several hypothesis classes yet might fail to learn some specific hypothesis classes which are in fact learnable. We then propose a third definition, whose min-max optimal learner does not have a closed form expression. Nevertheless, we show both upper and lower bounds over its regret, and show that the min-max regret vanishes for every hypothesis class of finite VC-dimension.

 Last, we consider the case where there are several hypothesis classes that might be nested In an hierarchical structure. In this case we propose several definitions for the regret and discuss their properties. We show how these definitions can lead to Elias’ codes for universal representation of the integers. We also use this framework to discuss the hypothesis classes of varying order Markov models.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום שם מלא + מספר ת.ז. בדף הנוכחות שיועבר באולם במהלך הסמינר

 

 

EE Seminar: Low Rank Models: From Signal Processing to Deep Learning Theory

28 באוקטובר 2024, 15:00 
סמינר זום  
EE Seminar: Low Rank Models: From Signal Processing to Deep Learning Theory

Electrical Engineering Systems Seminar

 

Speaker: Dana Wizner

Ph.D. student under the supervision of Prof. Raja Giryes

 

Monday, 28th October 2024, at 15:00

ZOOM Seminar

 

Meeting ID: 872 5270 3394
Passcode: 821643

 

Low Rank Models: From Signal Processing to Deep Learning Theory

Abstract

Recently, our world has entered the age of “Big Data.” We are now facing the challenge, and opportunity, of processing massive amounts of data while being able to uncover the information in it, buried as low-dimensional structures. To this end, we would like to explore the world of low-rank and sparse models, with an emphasis on theoretic aspects of real-world applications.

In this seminar, we study a variety of problems where a low rank or sparse prior arises naturally, and helps us to better explain observed phenomena or to simplify the common models. First, we study joint blind deconvolution and demixing, cast as a separable low-rank retrieval problem. Next, we explain the vulnerability of neural networks to universal and transferable adversarial attacks through the framework of sparsity. In another line of research we bridge between two important concepts: the Neural Tangent Kernel (NTK), which captures the evolution of deep neural networks (DNNs) during training, and the Neural Collapse (NC) phenomenon, which refers to the emergence of symmetry in DNNs, and prove the emergence of NC in DNNs with block-structured NTK. Finally, we study diffusion models as "correlation machines", where we analyze linear diffusion, and show a connection to the spiked covariance model and the power iteration method.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

 

 

משרת כימאי / מטלורג

דרישות:
התמחות באלקטרוכימיה
ניסיון עם אלומיניום / קורוזיה גלוונית / תהליכי איכול
ניסיון במחקר ובעבודה מעבדתית
המשרה רשומה בלשון זכר אך פונה לכלל האוכלוסיה המשרה מיועדת לנשים ולגברים כאחד

 

ימי ההיכרות שלך עם אוניברסיטת תל אביב בית ספר להנדסת חשמל - SAVE THE DATE

30-31.10 | ברוכים.ות הבאים.ות מחזור 2024

30 באוקטובר 2024, 8:00 
 
ללא תשלום
אירוע ימי היכרות ב 30-31.10.2024

רגע לפני ששנת הלימודים תתחיל והקמפוס יתמלא, אנחנו מזמינים אתכן ואתכם, סטודנטיות וסטודנטים שמתחילים עכשיו את השנה הראשונה ללימודים לתואר ראשון, להגיע לימי היכרות ראשונים ומרגשים עם כל המי ומי של האוניברסיטה, כדי שכשתתחילו ללמוד תדעו איפה הקפיטריה הכי טובה, איפה הכיתה ומיהם המרצות, המרצים ואפילו צוות המזכירות שלכם.ן.

 

מתי זה קורה?

בימים רביעי-חמישי | 30-31.10 | בין השעות 9:30-17:00 | ברחבי הקמפוס

 

 

הכנס הישראלי ה-11 למחקר באינטראקציית אדם-מחשב

31 באוקטובר 2024, 9:00 - 17:00 
 
הכנס הישראלי ה-11 למחקר באינטראקציית אדם-מחשב

הכנס עוסק במחקר בממשקי משתמש ובאופן בו ניתן להבין ולשפר את האינטראקציה בין בני אדם לבין מחשבים, מערכות בינה מלאכותית, וטכנולוגיה באופן כללי.

למידע ורישום לכנס לחץ כאן

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>