EE ZOOM Seminar: Generalization in Reinforcement Learning via Structural Priors

02 ביולי 2025, 16:00 
סמינר זום  
EE ZOOM Seminar: Generalization in Reinforcement Learning via Structural Priors

https://tau-ac-il.zoom.us/j/84875921874

Electrical Engineering Systems Seminar

 

Speaker: Maayan Shalom

M.Sc. student under the supervision of Dr. Alon Cohen

 

Monday, 2nd July 2025, at 16:00

 

Generalization in Reinforcement Learning via Structural Priors

Abstract

Generalization is a central challenge in reinforcement learning (RL) applications where an agent must succeed across many possible environments, not merely the handful it encountered during training. We formalize this challenge by assuming that, before each episode, Nature draws an unknown Markov Decision Process (MDP) from a fixed—yet hidden—distribution, and the agent must learn, from a finite training sample of such MDPs, a policy whose expected return over the entire distribution is near-optimal.

Earlier theory has shown that this problem is intractable in the worst case: partial observability of the true MDP identity induces an Epistemic Partially Observable MDP (Epistemic-POMDP), whose sample complexity can grow exponentially with the planning horizon. While positive results do exist, they typically rely on regularized learning objectives or strong Bayesian priors.

In this thesis, we revisit generalization through two natural structural lenses that make the problem tractable without resorting to explicit regularization. The first is a uniform similarity assumption, where every pair of MDPs induces statistically similar trajectory distributions under any policy. In this setting, we show that plain Empirical Risk Minimization (ERM) achieves a generalization error of O(1/m), where m is the number of training environments. This improves over the best known O(1/4m) rate for regularized ERM and highlights how trajectory-level similarity implicitly curbs hypothesis-class complexity. The second is a decodability assumption, where a short trajectory prefix uniquely reveals the identity of the underlying MDP. We show that in this case, ERM again enjoys the same O(1/m) sample complexity. Our analysis constructs truncated policies that depend on history only until the MDP is identified, and then act optimally according to the identified model.

Together, these results provide new foundations for learning under epistemic uncertainty. They delineate precise conditions under which simple empirical learning suffices, quantify the role of environment structure in determining sample complexity, and offer guidance for the design of agents that must generalize reliably in practice.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

 

יום עיון מחקרי - פרטים בהמשך ! SAVE THE DATE

05 בינואר 2026, 8:00 - 15:00 
 
יום עיון מחקרי - פרטים בהמשך  ! SAVE THE DATE

פרטים יפורסמו בהמשך

EE ZOOM Seminar: Tobamovirus Detection Using Deep Learning Algorithms on Hyper-spectral Images

02 ביולי 2025, 15:00 
סמינר זום  
EE ZOOM Seminar: Tobamovirus Detection Using Deep Learning Algorithms on Hyper-spectral Images

https://tau-ac-il.zoom.us/j/87937383476?pwd=VcPMEYtX0bFrNmOgPgW007m1BwtJnY.1&from=addon

Meeting ID: 879 3738 3476

Passcode: 945671

 

Electrical Engineering Systems ZOOM Seminar

 

Speaker: Itai Friedman

M.Sc. student under the supervision of Prof. Noam Koengstein 

Wednesday, 2nd July 2025, at 15:00

 

Tobamovirus Detection Using Deep Learning Algorithms on Hyper-spectral Images

Abstract

Tobamoviruses, such as Tomato brown rugose fruit virus (ToBRFV) and Cucumber green mottle mosaic virus (CGMMV), pose a significant threat to global agricultural productivity, particularly in high-value crops like tomatoes and cucumbers. These seed-transmitted viruses can spread rapidly, causing substantial economic losses and affecting food security worldwide. Early detection of these viruses in seeds is essential to prevent their spread and ensure healthy crop production. In this study, we propose a novel approach combining hyperspectral imaging (HSI) and deep learning techniques to detect Tobamovirus infections in tomato and cucumber seeds. A unique dataset of healthy and infected seeds was collected, utilizing custom-designed trays and a Visible and Near-Infrared (VNIR) camera for hyperspectral image acquisition. The goal of this research is to develop an accurate, non-invasive method for detecting infected seeds while exploring advanced deep learning architectures tailored for hyperspectral image classification.

To achieve this, we developed Hyperspectral Convolutional Vision Transformer (HCViT), a novel hybrid model that integrates components from Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), leveraging both local and global feature extraction capabilities. HCViT was evaluated using a held-out test set, achieving an accuracy of 0.94 for detecting infected tomato seeds, 0.78 for Ilan cucumber seeds, and 0.84 for Derby cucumber seeds. Comparative experiments demonstrated that HCViT outperformed standalone CNN and ViT models, highlighting the effectiveness of combining deep learning with HSI for early virus detection in seeds.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

 

EE ZOOM Seminar: Emission frequency prediction for echolocating bats in natural environments

06 ביולי 2025, 15:00 
סמינר זום  
EE ZOOM Seminar: Emission frequency prediction for echolocating bats in natural environments

https://tau-ac-il.zoom.us/meeting/register/6pJlp5hZR3CtEjBEOQGHyw

Electrical Engineering Systems Seminar

 

Speaker: Yotam Mimran

M.Sc. student under the supervision of Prof. Anthony Weiss

 

Sunday, 6th July 2025, at 15:00

 

Emission frequency prediction for echolocating bats in natural environments

Abstract

This study investigates how Greater horseshoe bats (Rhinolophus ferrumequinum) adjust their echolocation frequencies in complex natural environments.

Using GPS and microphone tags on free-flying bats, we capture and analyze both emitted signals and received echoes in real-world settings, marking the first time such data has been measured in the wild. By examining how bats modify their emission frequencies based on environmental variables and past echoes, we apply linear models to predict frequency adjustments.

Our findings provide new insights into which parameters are most influential in the bats' decision-making process, shedding light on their active sensing strategies in dynamic habitats.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

סמינר מחלקתי- 5.1.26

05 בינואר 2026, 14:00 - 15:00 
 
סמינר מחלקתי- 5.1.26

פרטים יפורסמו בהמשך

סמינר של פרופ' עימאד שאקור מהטכניון - פרטים נוספים בהמשך

29 בדצמבר 2025, 14:00 - 15:00 
 
סמינר של פרופ' עימאד שאקור מהטכניון - פרטים נוספים בהמשך

פרטים יפורסמו בהמשך

סמינר מאת פרופ' דייויד זארוק מאוניברסיטת בן גוריון שבנגב בנושא תכנון רובוטים בעלי ביצועים גבוהים בעלי הפעלה מינימלית

22 בדצמבר 2025, 14:00 - 15:00 
הפקולטה להנדסה  
סמינר מאת פרופ' דייויד זארוק מאוניברסיטת בן גוריון שבנגב בנושא תכנון רובוטים בעלי ביצועים גבוהים בעלי הפעלה מינימלית

Abstrct:
From delicate medical procedures to hazardous environment exploration, bio-inspired robots are transforming fields like medicine, search and rescue, maintenance, and security.
Our lab builds versatile bio-inspired robots for medicine, exploration, and environmental tasks. We often draw inspiration from nature's ingenuity but with a minimalist approach. Unlike animals' intricate musculature, our robots achieve impressive capabilities with a small number of motors, leading to innovative designs that can crawl, drive, and fly across diverse environments. From reconfigurable robots that adapt to challenging surfaces to wave-like swimmers, these robotic designs showcase the power of combining biological inspiration with efficient design. In this talk, we will present the impact of minimalistic actuation on enhancing performance in robotics and explore new actuation concepts that hold the potential to address specific challenges. By reducing the number of actuators and incorporating minimalist approaches, we can reduce the weight and size, improve energy efficiency, and enhance the robots' overall mobility and maneuverability. During the talk, we will showcase a variety of examples of robots that we designed in the last years. (The talk will discuss methods and concepts but will not include analytical models).

 

Bio:
David Zarrouk is an Associate Professor at the Mechanical Engineering department of Ben Gurion University of the Negev and director of the “Bio-inspired and Medical Robotics” Laboratory. He received his M.Sc. in 2007 (in stochastic mechanics) and Ph.D. in 2011 (in medical robotics) from the faculty of Mechanical Engineering at the Technion. Between Aug. 2011 and Sep. 2013, he was a Fulbright postdoctoral scholar at the EECS Dep. of U.C. Berkeley, working on miniature crawling robots. His research interests are in robotic design, bio-inspired and miniature robotics, flexible and slippery robot-to-surface interaction, space robotics, minimally actuated mechanisms, and medical devices. Prof. Zarrouk received multiple prizes in teaching, research, and innovation and is the inventor of 8 granted US patents.

סמינר מחלקתי- 15.12.25

15 בדצמבר 2025, 14:00 - 15:00 
 
סמינר מחלקתי- 15.12.25

פרטים יפורסמו בהמשך..

סמינר של פרופ' בת-חן נחמיאס-בירן - Mobility of the Future: New Tools and Capabilities

08 בדצמבר 2025, 14:00 - 15:00 
 
סמינר של פרופ' בת-חן נחמיאס-בירן  - Mobility of the Future: New Tools and Capabilities

Cities are now, more than ever, contending with the challenges of increased car usage, traffic congestion, air pollution and energy shortage. In order to mitigate existing and future negative impacts of urban mobility while improving performance, equity, environmental outcomes and levels of service, cities worldwide require tested solutions and verifiable insights. New analytical methods and frameworks for modeling and predicting the impacts of future mobility scenarios are required. Easy and fast synthesis techniques of virtual cities; an advanced simulation tools capable of capturing the highly heterogeneous, individual-level activity choices and supply-demand interactions of a large-scale, real-world networks; high resolution energy consumption and emissions model; and other advanced capabilities are presented. With these capabilities, we can simulate the effects of a portfolio of technology, policy and investment options under alternative future scenarios at both the individual and system-wide levels. Simulation case studies demonstrate their potential benefits. 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>