**שימו לב - בוטל** סמינר מחלקתי של מיכאל פולואקטוב- התפשטות ויציבות של חזיתות טרנספורמציה מושפעות מאמץ במוצקים

**שימו לב - בוטל**

21 בספטמבר 2025, 14:00 - 15:00 
 
**שימו לב - בוטל**    סמינר מחלקתי של מיכאל פולואקטוב- התפשטות ויציבות של חזיתות טרנספורמציה מושפעות מאמץ במוצקים

 

 

**שימו לב - בוטל**

 

Propagation and stability of stress-affected transformation fronts in solids

Sunday September 21th 2025 at 14:00 

Wolfson Building of Mechanical Engineering, Room 206

 

 

Abstract:

There is a wide range of problems in continuum mechanics that involve transformation fronts, which are non-stationary interfaces between two different phases in a phase-transforming or a chemically-transforming material. From the mathematical point of view, the considered problems are represented by systems of non-linear PDEs with discontinuities across non-stationary interfaces, kinetics of which depend on the solution of the PDEs. Such problems have a significant industrial relevance – an example of a transformation front is the localised stress-affected chemical reaction in Li-ion batteries with Si-based anodes. Since the kinetics of the transformation fronts depends on the continuum fields, the transformation front propagation can be decelerated and even blocked by the mechanical stresses. This talk will focus on three topics: (1) the stability of the transformation fronts in the vicinity of the equilibrium position for the chemo-mechanical problem, (2) a fictitious-domain finite-element method (CutFEM) for solving non-linear PDEs with transformation fronts and (3) an applied problem of Si lithiation.

 

Bio:

Mikhail Poluektov is currently appointed as a Lecturer in Mathematics at the University of Dundee (UK). His research focuses on computational and applied mathematics covering a large range of models and methods. In particular, his recent research includes fictitious-domain and multiscale methods for non-linear partial differential equations, as well as approximation theory methods. His work has been published in journals such as Computer Methods in Applied Mechanics and Engineering. Prior to current appointment, Dr Poluektov held a Senior Research Fellow position at the University of Warwick (UK). Dr Poluektov obtained a PhD from the Eindhoven University of Technology (Netherlands).

 

 

 

חברת רפאל מחפשת בוגר.ת עם ניסיון בפיתוח אלגוריתמים

בעלי תואר שני ומעלה (מדמ"ח / מתמטיקה / פיזיקה / הנדסה), ניסיון של שנתיים לפחות בפיתוח אלגוריתמים מתמטיים, והיכרות עם בעיות אלגוריתמיות מורכבות. עדיפות משמעותית להיכרות עם אלגוריתמיקה קוונטית 
 

יום פקולטה של הפקולטה להנדסה

10 ביולי 2025, 9:00 - 20:30 
 
יום פקולטה של הפקולטה להנדסה

09.00 ימי פרויקטים

הצגת פרויקטי הגמר של סטונדטים.ות שנה ד'

14.00 engineering village 

מיצגים מרהיבים ותוצרים של הפקולטה להנדסה 

17.00 אירוע ערב ופאנל מומחים 

הצגת Run:ai פאנל בנושא אקלים וסביבה  בהנחיית מיקי חיימוביץ'

* מיועד לבוגרי ובוגרות הפקולטה

 

EE Seminar: RadarBOT-SORT: Integrating Kalman Filter and Neural Network for Multi-Object Tracking by Radar

09 ביולי 2025, 15:00 
סמינר זום  
EE Seminar: RadarBOT-SORT: Integrating Kalman Filter and Neural Network for Multi-Object Tracking by Radar

https://us05web.zoom.us/j/89308496750?pwd=CZmbhbnb9cZRRpIfG1MPeZ5INBdzX1.1

 

Electrical Engineering Systems ZOOM Seminar

 

Speaker: Idan Daniel

M.Sc. student under the supervision of Prof. Ben-Zion Bobrovsky

Wednesday, 9th July 2025, at 15:00

 

RadarBOT-SORT: Integrating Kalman Filter and Neural Network for Multi-Object Tracking by Radar

 

Abstract

Multi-object tracking in radar systems faces unique challenges due to measurement noise, detection confidence uncertainty, and the absence of rich visual features available in camerabased systems. This seminar presents RadarBOT-SORT, a novel tracking framework that integrates neural network confidence scores with Kalman filter-based SORT (Simple Online Realtime Tracking) algorithms for enhanced radar object tracking performance.

The research addresses a fundamental question in radar signal processing: whether postprocessing deep learning detection outputs with tracking algorithms improves overall system performance compared to raw neural network predictions. The proposed system combines a deep learning network to discover detections in radar Range-Azimuth-Doppler outputs for radar object detection, with a confidence-enhanced SORT (Simple Online Realtime Tracking) algorithm that incorporates detection confidence scores into both track association and Kalman filter measurement noise adaptation.

Idan Daniel is an M.Sc. student and deep learning engineer with experience in radar deep learning algorithms development, specializing in AI applications for radar systems.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

 

 

טופס בקשה להרשמה לקורסים בהתמחות בזרם חזק - סמסטר א' תשפ"ו

טופס זה מיועד לסטו' אשר נרשמו ומילאו את טופס ההרשמה להתמחות  'זרם חזק' ומתעתדים לבצע את הפרוייקט במסלול לצורך קבלת רישיון.

עודכן: 11.08.2025
במידה ולא שלחת יש לשלוח את הטופס למזכירות הסטודנטים באמצעות מערכת הפניות בנוסף לרישום לקורסים
יש לבחור את הקורסים שהנכם מעוניינים להירשם בהתאם לידיעון תשפ"ו
יש לבחור את הקורסים שהנכם מעוניינים להירשם בהתאם לידיעון תשפ"ו
To prevent automated spam submissions leave this field empty.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.

EE Seminar: OrCam Hear: Listening Redefined – Sound Source Separation and Speech Enhancement on the Edge

30 ביוני 2025, 13:00 
אולם 011, בניין כיתות חשמל  
EE Seminar: OrCam Hear: Listening Redefined – Sound Source Separation and Speech Enhancement on the Edge

הרישום לסמינר יבוצע באמצעות סריקת הברקוד למודל (יש להיכנס לפני כן למודל,  לא באמצעות האפליקציה) - )- הרישום מסתיים ב- 13:10

Registration to the seminar will be done by scanning the barcode for the Moodle (Please enter ahead to the Moodle, NOT by application)- Registration ends at 13:10

 

(The talk will be given in English)

 

Speaker:     Tal Rosenwein, CEO and Chief of AI at OrCam Hear

 

011 hall, Electrical Engineering-Kitot Building‏

Monday, June 30th, 2025

13:00 - 14:00

 

OrCam Hear: Listening Redefined – Sound Source Separation and Speech Enhancement on the Edge

 

Abstract

In this talk, I will present the challenge and solution behind OrCam Hear's selective hearing technology, a system recently named one of TIME’s Best Inventions of 2024. We will begin with a high-level overview of the product and its impact, and then dive into the technical foundations, focusing on problem formulation and three core tasks in speech enhancement: noise reduction, blind source separation, and target speech enhancement. The talk will also touch on key trade-offs and innovations that enabled us to run complex AI pipelines in real time on the edge.

Short Bio

Tal Rosenwein is the CEO and Chief of AI at OrCam Hear, and an adjunct lecturer in Tel Aviv University’s Computer Science faculty. Over the past 10.5 years, Tal has specialized in speech enhancement and conversational AI, leading the development of 8 product lines used in over 35 countries. His work has resulted in dozens of patents and multiple research papers published in top AI/ML conferences. Tal has given tutorials at international conferences and organized the Israeli conference for audio and speech technologies (iSpeech).

 

EE ZOOM Seminar: Generalization in Reinforcement Learning via Structural Priors

02 ביולי 2025, 16:00 
סמינר זום  
EE ZOOM Seminar: Generalization in Reinforcement Learning via Structural Priors

https://tau-ac-il.zoom.us/j/84875921874

Electrical Engineering Systems Seminar

 

Speaker: Maayan Shalom

M.Sc. student under the supervision of Dr. Alon Cohen

 

Monday, 2nd July 2025, at 16:00

 

Generalization in Reinforcement Learning via Structural Priors

Abstract

Generalization is a central challenge in reinforcement learning (RL) applications where an agent must succeed across many possible environments, not merely the handful it encountered during training. We formalize this challenge by assuming that, before each episode, Nature draws an unknown Markov Decision Process (MDP) from a fixed—yet hidden—distribution, and the agent must learn, from a finite training sample of such MDPs, a policy whose expected return over the entire distribution is near-optimal.

Earlier theory has shown that this problem is intractable in the worst case: partial observability of the true MDP identity induces an Epistemic Partially Observable MDP (Epistemic-POMDP), whose sample complexity can grow exponentially with the planning horizon. While positive results do exist, they typically rely on regularized learning objectives or strong Bayesian priors.

In this thesis, we revisit generalization through two natural structural lenses that make the problem tractable without resorting to explicit regularization. The first is a uniform similarity assumption, where every pair of MDPs induces statistically similar trajectory distributions under any policy. In this setting, we show that plain Empirical Risk Minimization (ERM) achieves a generalization error of O(1/m), where m is the number of training environments. This improves over the best known O(1/4m) rate for regularized ERM and highlights how trajectory-level similarity implicitly curbs hypothesis-class complexity. The second is a decodability assumption, where a short trajectory prefix uniquely reveals the identity of the underlying MDP. We show that in this case, ERM again enjoys the same O(1/m) sample complexity. Our analysis constructs truncated policies that depend on history only until the MDP is identified, and then act optimally according to the identified model.

Together, these results provide new foundations for learning under epistemic uncertainty. They delineate precise conditions under which simple empirical learning suffices, quantify the role of environment structure in determining sample complexity, and offer guidance for the design of agents that must generalize reliably in practice.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

 

יום עיון מחקרי - פרטים בהמשך ! SAVE THE DATE

05 בינואר 2026, 8:00 - 15:00 
 
יום עיון מחקרי - פרטים בהמשך  ! SAVE THE DATE

פרטים יפורסמו בהמשך

EE ZOOM Seminar: Tobamovirus Detection Using Deep Learning Algorithms on Hyper-spectral Images

02 ביולי 2025, 15:00 
סמינר זום  
EE ZOOM Seminar: Tobamovirus Detection Using Deep Learning Algorithms on Hyper-spectral Images

https://tau-ac-il.zoom.us/j/87937383476?pwd=VcPMEYtX0bFrNmOgPgW007m1BwtJnY.1&from=addon

Meeting ID: 879 3738 3476

Passcode: 945671

 

Electrical Engineering Systems ZOOM Seminar

 

Speaker: Itai Friedman

M.Sc. student under the supervision of Prof. Noam Koengstein 

Wednesday, 2nd July 2025, at 15:00

 

Tobamovirus Detection Using Deep Learning Algorithms on Hyper-spectral Images

Abstract

Tobamoviruses, such as Tomato brown rugose fruit virus (ToBRFV) and Cucumber green mottle mosaic virus (CGMMV), pose a significant threat to global agricultural productivity, particularly in high-value crops like tomatoes and cucumbers. These seed-transmitted viruses can spread rapidly, causing substantial economic losses and affecting food security worldwide. Early detection of these viruses in seeds is essential to prevent their spread and ensure healthy crop production. In this study, we propose a novel approach combining hyperspectral imaging (HSI) and deep learning techniques to detect Tobamovirus infections in tomato and cucumber seeds. A unique dataset of healthy and infected seeds was collected, utilizing custom-designed trays and a Visible and Near-Infrared (VNIR) camera for hyperspectral image acquisition. The goal of this research is to develop an accurate, non-invasive method for detecting infected seeds while exploring advanced deep learning architectures tailored for hyperspectral image classification.

To achieve this, we developed Hyperspectral Convolutional Vision Transformer (HCViT), a novel hybrid model that integrates components from Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs), leveraging both local and global feature extraction capabilities. HCViT was evaluated using a held-out test set, achieving an accuracy of 0.94 for detecting infected tomato seeds, 0.78 for Ilan cucumber seeds, and 0.84 for Derby cucumber seeds. Comparative experiments demonstrated that HCViT outperformed standalone CNN and ViT models, highlighting the effectiveness of combining deep learning with HSI for early virus detection in seeds.

 

השתתפות בסמינר תיתן קרדיט שמיעה = עפ"י רישום בצ'ט של שם מלא + מספר ת.ז.

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>