פריצת דרך בתחום הנדסת החומרים: החוקרים הצליחו לשלוט בתדרי אור באמצעות מטא-חומרים לא-לינאריים

בחר הכל
משפטים
מאסטר-טראק
כללי
הנדסה
חיי הקמפוס
ASV
מערכות קוונטיות
תחבורה חכמה
רכב אוטונומי
קול קורא
מכונת הנשמה
COVID-19
מטא-חומרים...
הנדסת תעשייה
הנדסת חשמל
הנדסה מכנית
אולטרה-סגול
אולטרה-סגול
RoboBoat
MRI
בחר הכל
פרס
אירוע
ברכות
כנס
מחקר
מחקר בפקולטה
מינוי
פוקוס

מחקר
בשנים האחרונות אחת השאלות הביולוגיות הנחקרות ביותר נוגעת לגורמים הקובעים את ארגון הגנים בתוך הגנום. במקרה של חיידקים ויצורים פרוקריוטים אחרים, קיים סדר וארגון המוכר היטב בספרות, אשר בא לידי ביטוי בצברים של גנים, המכונים אופרונים (Operons) וכוללים לרוב כמה גנים בעלי קשר תפקודי ביניהם. הגנים המקובצים באופרון יכולים, למשל, לקודד מספר חלבונים המשתתפים באותו תהליך (כגון פירוק של סוכר הלקטוז), ועל כן הם נתונים לבקרה משותפת כיחידה אחת. לעומת זאת, בגנומים של יצורים איקריוטים-עילאיים כגון בני-האדם, צברים פשוטים מסוג זה הם נדירים יחסית, והעקרונות של ארגון הגנום האיקריוטי נותרו מעורפלים במשך השנים.
כאשר נלקח בחשבון הקיפול התלת-ממדי של כרומוזומים, גנים הממוקמים רחוק זה מזה על רצף הדנ"א של אותו כרומוזום, או אף נמצאים על שני כרומוזומים שונים, עשויים להימצא קרובים זה לזה בגרעין התא. בזכות טכנולוגיות מדידה חדישות מן העשור האחרון, הצליח חֵקֶר הארגון התלת-ממדי של גנומים ביצורים איקריוטים, לעומת הארגון החד-ממדי, להביא ראיות לכך שארגון זה אינו אקראי ושיש לו חלק בתהליכי בקרה בתא. עם זאת, טרם הובנו המנגנונים הקובעים את הארגון המקיף של הגנום.
תבניות אוניברסיליות בגנום
לאחרונה, צוות מדענים בראשות ד"ר תמיר טולר מהמחלקה להנדסה ביו-רפואית באוניברסיטת תל-אביב, שכלל את הדוקטורנט אלון דיאמנט מהמחלקה להנדסה ביו-רפואית באוניברסיטת תל-אביב ואת פרופ' רון פינטר מהפקולטה למדעי המחשב בטכניון, חשפו עקרונות אוניברסאליים העומדים בבסיס הארגון הגנומי באיקריוטים. במחקר שפורסם בכתב העת Nature Communications, מציגים החוקרים תבניות בארגון התלת-ממדי של גנומים, המעידות על קשר חזק בין מיקומם של גנים לבין קשרי הגומלין התפקודיים ביניהם.
באמצעות ניתוח חישובי של נתונים ניסיוניים, הצליחו החוקרים להראות שמרחקים בין גנים במרחב גרעין התא תואמים למרחקים במרחב מתמטי המתאר את הפונקציונאליות של גנים. כלומר, גנים אשר יש ביניהם דמיון רב מבחינת התפקיד שלהם בתא צפויים להימצא קרובים בגרעין התא, ולהיפך – גנים אשר שונים מאוד זה מזה צפויים להימצא רחוקים. הניתוח המקיף כלל לראשונה את כל הגנים הידועים בחמישה גנומים איקריוטיים שונים, בהם אדם, עכבר, צמח ושני מיני שמרים, אשר מדידות של קיפול הדנ"א שלהם תועדו בשנים האחרונות. האנליזה כללה אלפי עד עשרות אלפי גנים בכל אחד מהיצורים. בכל המקרים נמצאה מידה מפתיעה של סדר וארגון בגנומים שנבדקו, ובהתאם לעקרונות זהים.
גנים קרובים-רחוקים
אחד האתגרים המרכזיים במחקר היה הגדרת ומדידת המרחק הפונקציונאלי בין גנים – כלומר, כיצד אפשר למדוד עד כמה זוגות של גנים דומים מבחינת התפקיד שלהם בתא. הגדרת מרחק זה היא שאפשרה את ההקבלה בין מרחקים עבור כל זוג גנים (שנמדדו בניסוי) במרחב הפיזי של התא מחד, לבין מרחקים במרחב הפונקציונאלי מאידך. לשם כך, הציעו החוקרים גישה חדשה המתבססת על השוואת רצפי הדנ"א של גנים שונים, והראו שאמת המידה שהציעו למדידת הדמיון בין הרצפים אכן מקבילה לדמיון בפונקציה של גנים בתא, על-סמך המידע שנאסף עד עתה במאגרי נתונים ביולוגיים.
הקריטריון להשוואת רצפי דנ"א מתבסס על תכונות של הקוד הגנטי, המשותף לכלל היצורים החיים. רצפי דנ"א מורכבים מ-4 סוגי נוקלאוטידים (Nucleotides), הניתנים להקבלה לאותיות בשפת אנוש. מאותיות הנוקלאוטידים ניתן להרכיב "מילים" שונות המכונות קודונים (Codons) – כל קודון מְקוֹדֵד חומצת אמינו אחת בחלבון, וכל רצף קודונים כאלה מתורגם לשרשרת חומצות המרכיבות חלבון שלם. אחת התכונות המעניינות של הקוד הגנטי, היא שניתן לקודד חלבונים הזהים בהרכבם ובתכונותיהם ע"י צירופי קודונים שונים, ומספר גדול מאוד של רצפים אפשריים יכולים לקודד את אותו חלבון. מבין הצירופים האפשריים הרבים, ניתן לראות לעתים קרובות העדפה לקידוד באמצעות קודונים מסוימים בגן (או אף באזור מסוים בתוכו), שתתבטא בשכיחות גבוהה יותר שלהם ברצף. השוואת השכיחות של הופעת קודונים ברצפים של גנים שונים – "אוצר המלים" של הגנים – אפשרה לחוקרים להגדיר את המרחק הפונקציונאלי המוצע במחקר.
חיזוי והבנת תפקידי הגנים
הממצאים האחרונים שופכים אור על עקרונות הארגון הגנומי ביצורים איקריוטיים ומעוררים תקווה לגבי יישומם במחקרים עתידיים, על מנת לשפר את השיטות להבנת הארגון המרחבי של גנומים, למשל בבניית מודלים תלת-ממדיים מדויקים יותר מן הנתונים הניסיוניים. הממצאים גם מאפשרים בניית מודלים של האבולוציה של הגנום ושל ארגונו ע"י ניתוח מספר מינים במקביל. נוסף על כך, ניתן ליישם את הגישה שהוצעה לצורך חיזוי והבנה של תפקידיהם של גנים, של אופן הביטוי שלהם ושל האבולוציה של תפקודם. בעתיד, ניתן לשער שהנדסה של גנומים תחייב התחשבות בהיבטים הנוגעים לארגון המרחבי שלהם, אשר יש לו חלק חיוני בבקרה על תהליכים בתא.

מחקר
פריצת דרך בתחום הנדסת החומרים: החוקרים הצליחו לשלוט בתדרי אור באמצעות מטא-חומרים לא-לינאריים

חוקרים מאוניברסיטת תל-אביב הצליחו להנדס חומר לא-לינארי חדש, שמאפשר שליטה חסרת תקדים בתדרים של אור. את החומר החדש פיתחו נדב סגל, שי קרן-צור, נטע הנדלר וד"ר טל אלנבוגן מהמחלקה לאלקטרוניקה פיזיקלית בבית הספר להנדסת חשמל בפקולטה להנדסה ע"ש פליישמן. המסטרנט נדב סגל קיבל על המחקר את הפרס על שם משפחת פדר על עבודת מחקר מצטיינת בתחום טכנולוגיות התקשורת, ואילו הדוקטורנט שי קרן-צור קיבל את מלגת המרכז לאנרגיה מתחדשת באוניברסיטת תל-אביב. תוצאות המחקר התפרסמו בכתב העת Nature Photonics.

מחקר
טורבינות רוח קטנות ושקטות, שיפעלו ביעילות במהירויות רוח נמוכות בהרבה מהמקובל כיום, יגבירו באופן ניכר את היכולת לרתום את אנרגיית הרוח לצורכי האדם

הרוח היא אחד ממקורות האנרגיה הנקיים ביותר שנותן לנו הטבע, ומדענים ברחבי העולם מחפשים דרכים יעילות לרתום אותה לשימוש האדם. הקושי העיקרי הוא שהרוח, עוצמתה וכיווניה הם אקראיים ואינם ניתנים לחיזוי מדויק או לשליטה. במעבדתו של פרופ' אבי זייפרט בבית הספר להנדסה מכנית שבפקולטה להנדסה מפתחים טכנולוגיות חדשניות, שיאפשרו ניצול יעיל של אנרגיית הרוח גם במהירויות רוח נמוכות, בתנאים ובמקומות שונים.
לרתום את הרוח
"לרוח כמקור אנרגיה יש פוטנציאל גדול גם בישראל, בעיקר במקומות הגבוהים", אומר פרופ' זייפרט. אך לפני שנוכל להציב ברחבי הארץ טורבינות רוח להפקת חשמל, עלינו לפתור כמה בעיות טכנולוגיות: ראשית, הטורבינות הקיימות היום יעילות רק בטווח מסוים של מהירות רוח. במקומות ובזמנים בהם הרוח חלשה יותר, לא ניתן להסתמך עליהן. שנית, הן רועשות, דבר המהווה מגבלה להצבתן באזורי מגורים או בקרבתם, ושלישית, הן גדולות ודורשות שטח רב".
"במחקר שלי, בשיתוף עם פרופ' טוביה מילוא ופרופ' אבי קריבוס מבית הספר להנדסה מכנית, אנו שואפים לפתח טורבינות רוח קטנות ושקטות, שיפעלו ביעילות במהירויות רוח נמוכות בהרבה מהמקובל היום. טכנולוגיה כזאת תגביר באופן ניכר את היכולת לרתום את אנרגיית הרוח לצורכי האדם," מוסיף פרופ' זייפרט.
"זה הרוח השובב"
צוות המחקר של פרופ' זייפרט במעבדת מדואו לאווירודינמיקה (Meadow Aerodynamics Laboratory) באוניברסיטת תל-אביב הוא מהמובילים בעולם בתחום הקרוי "בקרת זרימה פעילה", ועוסק בפיתוחו כבר למעלה מ־20 שנה. מדובר במערכת המשלבת חיישנים שמזהים את מצב זרימת הרוח סביב להבי הטורבינה, עם מפעילי זרימה - מתקנים זעירים אשר יוצרים, בתגובה למידע מהחיישנים, ערבולי אוויר מבוקרים בקרבת הלהב, ובכך מגדילים את רמת הנצילות האנרגטית. כך, באמצעות השקעה קטנה של אנרגיה במקום הנכון ובזמן הנכון, אפשר להפחית משמעותית את גורם האקראיות של הרוח, ולשפר את הביצועים והתפוקה הכוללים של טורבינת הרוח.
בעתיד תאפשר השיטה החדשנית להציב טורבינות רוח יעילות באתרים שבהם אנרגיית הרוח נחשבת היום בלתי כלכלית: במקומות שמהירות הרוח נמוכה או משתנה, באזורים שכיוונה ו/או עוצמתה אינם יציבים, ואף בערים ובקרבת יישובים. לכשיתגשם החזון הזה, יתרחבו באופן ניכר גם האפשרויות לניצול אנרגיית הרוח: נוכל לרתום אותה ישירות לייצור חשמל ולאגירת אנרגיה, לטעינת מצברים ולשאיבת מים, לשימושים מגוונים בבנייני מגורים ועוד.
אין ספק ששימוש באנרגיית הרוח הנקייה כחלופה ישימה ויעילה לדלקים המזהמים שמשמשים אותנו היום, יתרום תרומה חשובה לבריאות האדם והסביבה. עם זאת, לדברי פרופ' זייפרט, הפעלת הטכנולוגיה כרוכה בינתיים בעלויות גבוהות, ולכן דרושה לשם כך תמיכה של ממשלה בעלת מודעות ואחריות סביבתית - כפי שנעשה כבר היום בתחום אנרגיית השמש.
משאיות אווירודינמיות
לצד מחקריו על טורבינות הרוח, שואף פרופ' זייפרט לפתח יישומים נוספים לטכנולוגיה החדשנית של בקרת זרימה פעילה. בין היתר עוסקת קבוצתו במחקר ייחודי, שמטרתו להפחית את ההתנגדות האווירודינמית של משאיות גדולות הנעות בכבישים מהירים. חלקן האחורי של משאיות אלה אינו מעוצב בצורה אווירודינמית, אלא קטום בצורתו בשל דרישות מעשיות של טעינה ופריקה של סחורה. לכן הוא אינו מאפשר זרימת אוויר חלקה, ויוצר התנגדות גבוהה. כדי להקטין את ההתנגדות, שותלים המדענים מערכת בקרת זרימה פעילה בנגרר של המשאית, והשיטה החכמה מצליחה להגדיל את היעילות האנרגטית ולצמצם משמעותית את צריכת הדלק ואת זיהום האוויר הנובע ממנה. עבודת הפיתוח דורשת שילוב של מחקר בסיסי המתבצע במעבדה, עם מחקר יישומי-ניסויי דרך נקבות רוח (מבנה המשמש לעריכת ניסויים בזרימת אוויר) עם מודלים של משאית. התקווה היא שבתוך שנים אחדות יושלם המחקר בהצלחה, ויוביל למוצר שהשפעתו הסביבתית אדירה.
מתוך החוברת "מחליפים כוח" בעריכת דוברת האוניברסיטה >>