מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
מאסטר-טראק
מחקר
אקדמיה ותעשייה
בוגרים ובוגרות
הנדסת חשמל
הנדסת סביבה
הנדסת מערכות
הנדסת תעשייה
הנדסה מכנית
הנדסה ביו-רפואית
הנדסה ורוח
מדע והנדסה של חומרים
מדעים דיגיטליים להיי-טק
מכון שלמה שמלצר לתחבורה חכמה
מימין לשמאל: ד"ר עמית קומאר-סארקאר, ד"ר אינס צוקר והדוקטורנט אנדריי איתן רובין

מחקר

15.08.2021
מודל חדש יאפשר לראשונה לבחון את הנזק הסביבתי שיוצר מיקרופלסטיק בתאי אדם, בצמחים

ד"ר צוקר מבית הספר להנדסה מכנית בשיתוף החוקרים ד"ר עמית קומאר-סארקאר והדוקטורנט אנדריי איתן רובין הצליחו לייצר חיקוי מדויק של מיקרופלסטיקים סביבתיים בתנאי מעבדה ובטווחי זמן קצרים 

  • מחקר
  • הנדסת סביבה
  • הנדסה מכנית

מודל חדש שפותח באוניברסיטת תל אביב יאפשר לראשונה לבחון את הנזק הסביבתי שיוצר מיקרופלסטיק בתאי אדם, בצמחים, בבעלי חיים יבשתיים וימיים ובסביבה כולה. בעזרת הפיתוח הטכנולוגי הייחודי ניתן יהיה לייצר מיקרופלסטיק מהונדס בתנאי מעבדה המדמה בזמן יחסית קצר את הליך התפרקותו בסביבה.  

 

המחקר נערך בהובלת ד"ר אינס צוקר מבית הספר להנדסה מכנית ובית הספר פורטר ללימודי הסביבה באוניברסיטת תל אביב ובשיתוף החוקרים ד"ר עמית קומאר-סארקאר והדוקטורנט אנדריי איתן רובין. המחקר פורסם בכתבי העת היוקרתיים: : Science of the Total Environment ו-Environmental Science and Technology.

 

המיקרופלסטיק נמצא כמעט בכל מקום, בקופסאות האוכל ובתרופות שלנו, בגינה הציבורית, בצעצועים של הילדים, בבקבוקי שתיה, בבגדים, במחשבים, בטלפונים הניידים ועוד. החוקרים מסבירים שכיוון שהפלסטיק אינו חומר טבעי, הוא מתפרק לאט מאד בטבע בתהליך שנמשך לעתים אלפי שנים. במסגרת תהליך זה, הפלסטיק מתחלק לחלקיקים קטנים יותר ויותר בסקאלה מיקרונית ואף ננומטרית. הבעיה היא שלאורך התהליך, חלקיקי המיקרופלסטיק פוגשים חומרים אחרים טבעיים ולא טבעיים, ומתבלים באופן שונה, כך שבסופו של תהליך לכל אחד מהחלקיקים יש תכונות ומאפיינים שונים. כך למשל, פלסטיק שמתבלה באנטרקטיקה יהיה שונה מכזה שמתבלה במזרח התיכון ואילו פלסטיק שמשמש ליצירת כלים חד פעמיים יתפרק אחרת מפלסטיק שמשמש לאריזות. בליל המיקרופלסטיקים והעובדה שאין חלקיק אחד שזהה למשנהו מקשה מאוד על חוקרים רבים בעולם בקביעה באשר להשלכות הסביבתיות השונות.

בתמונה: מיקרופלסטיק

 

במסגרת הפיתוח החדש, החוקרים יצרו למעשה מיקרופלסטיק מהונדס שמדמה בצורה מואצת את הבלייה שעובר הפלסטיק בסביבה. הפלסטיק נטחן לחלקיקים גסים ולאחר מכן נחשף לסדרה של תהליכי פירוק בתנאי מעבדה כמו חשיפה לחום, לקרינה אולטרה סגולה, לפירוק מכאני אגרסיבי ועוד, עד שלבסוף מתקבלים מיליוני חלקיקי פלסטיק בגודל של כ-1 מיקרון, שהם זהים לגמרי בגודלם, בסוג הפלסטיק מהם מורכבים, בתכונות פני השטח שלהם, ובצורתם. 

 

"המטרה שלנו הייתה לייצר מיקרופלסטיק סביבתי בתנאי מעבדה ובטווחי זמן קצרים שיכול לשמש לאינספור מבחנים שיגידו לנו אחת ולתמיד האם – ובאיזה אופן – מיקרופלסטיק מסוכן לאדם ולסביבה" - אומרת ד"ר צוקר. "מדובר בשיטה שמהווה בסיס ליצירת הרבה סוגים של מיקרופלסטיק, בגילאים שונים ומחומרים שונים, כך שאפשר לבודד ולבחון את ההשפעה של פרמטרים שונים, כמו הגודל וסוג הפלסטיק. המטרה היא שחוקרים בישראל ובעולם שעוסקים בהשפעות השליליות של מיקרופלסטיק על הסביבה יוכלו לקבל מיקרופלסטיקים מהונדסים ונשלטים שהרבה יותר דומים למה שאנחנו רואים בסביבה מהמודלים הקיימים כיום".

 

ניסויי המשך ראשוניים שנעשו בתרביות תאים ע"י צוות המחקר, הראו כי מודל הפלסטיק שפותח במעבדה אכן רעיל יותר בטווח הריכוזים שנבדק מול מודל הכדוריות פלסטיק שנמצא בשימוש רחב היום. כבר בשלב זה, החוקרים עובדים על בחינה של המודל החדש בתאי אדם, בצמחים ובבעלי חיים ימיים ומקווים כי בקרוב הערפל סביב שאלת הרעילות של המיקרופלסטיק יוכל להתחיל להתפוגג.

מודל להקמת חוות גידול אצות

מחקר

10.08.2021
חוות לגידולי אצות בשפכי נחלים מקטינות מאוד את ריכוזי החנקן ומונעות זיהום סביבתי

חוקרים מהפקולטה להנדסה, מבית הספר למדעי הסביבה ומדעי כדור הארץ ואוניברסיטת ברקלי מצאו כי האצות שגדלות בסמיכות לשפכי הנחלים יודעות לספוג את החנקן כך שיתאים לתקנים הסביבתיים ולמנוע את התפזרותו בים. בדרך זו, ניתן לייצר מעין "מתקן טיהור טבעי" שיש לו גם לו ערך אקולוגי משמעותי וגם ערך כלכלי משמעותי.

  • מחקר
  • הנדסת סביבה
  • הנדסה מכנית

מחקר חדש של אוניברסיטת תל אביב ואוניברסיטת ברקלי מציע מודל ולפיו הקמת חוות לגידול אצות בסמיכות לשפכי הנחלים מקטינה מאוד את ריכוזי החנקן בנחל ומונעת זיהום סביבתי בנחלים ובימים. המחקר נערך בהובלת הדוקטורנט מירון צולמן, בהנחיה משותפת של פרופ' אלכסנדר גולברג מבית הספר למדעי הסביבה ומדעי כדור הארץ ע"ש פורטר ושל פרופ' אלכסנדר ליברזון מבית הספר להנדסה מכנית באוניברסיטת תל אביב. המחקר נערך בשיתוף פרופ' בוריס רובינסקי מהפקולטה להנדסה מכנית באוניברסיטת ברקלי. המחקר פורסם בכתב העת היוקרתי Communications Biology.

 

בניית מודל של חוות אצות

במסגרת המחקר, החוקרים בנו מודל של חוות אצות גדולה לגידול אצה חסנית ים תיכונית בסמיכות לשפך נחל אלכסנדר, מאות מטרים מהים הפתוח. נחל אלכסנדר נבחר שכן הנחל מזרים חנקן מזהם מהשדות הסמוכים ומהיישובים במעלה הזרם לים התיכון. הנתונים עבור המודל נאספו במשך שנתיים מגידולים מבוקרים ומגידול במי ים.

 

החוקרים מסבירים כי חנקן הוא דשן הכרחי לחקלאות יבשתית, אבל הוא בא עם תג מחיר סביבתי. ברגע שהחנקן מגיע לים הוא מתפזר אקראית, ופוגע במערכות אקולוגיות שונות. כתוצאה מכך, המדינה מוציאה היום הרבה כסף על טיפול בריכוזי חנקן במים ויש הסכמים בינלאומיים שמגבילים העמסת חנקן בימים, כולל בים תיכון.

 

"המעבדה שלי חוקרת תהליכים בסיסיים ומפתחת טכנולוגיות עבור חקלאות ימית", מסביר פרופ' גולברג. "אנחנו מפתחים טכנולוגיות לגידול אצות בים כדי לקבע פחמן ולמצות מהן חומרים שונים כמו חלבונים ועמילנים, במטרה לייצר את התוצרת החקלאית גם בים. במחקר הראנו שאם מגדלים את האצות בהתאם למודל שפיתחנו, בסמיכות לשפי הנחלים, הן יודעות לספוג את החנקן כך שיתאים לתקנים הסביבתיים, למנוע את התפזרותו במים ובכך לנטרל את הזיהום הסביבתי. בדרך זו, אנחנו למעשה מייצרים מעין "מתקן טיהור טבעי" שיש לו גם לו ערך אקולוגי משמעותי וגם ערך כלכלי שכן ניתן למכור את האצות כביומסה לשימוש האדם.

 

צופים את העתיד בזכות המתמטיקה

החוקרים מוסיפים כי המודל המתמטי מצליח לנבא את תפוקות החוות ולקשור את תפוקת האצות והרכבן הכימי לריכוז החנקן בנחל. "המודל שלנו מאפשר לחקלאים ימיים, וגם לגופי ממשל וסביבה, לדעת מראש מה תהיה ההשפעה ומה יהיו התוצרים של חוות אצות גדולה – לפני שמקימים את החווה בפועל", מוסיף מירון צולמן. "בזכות המתמטיקה אנחנו יודעים לעשות את ההתאמות גם לחוות גידול גדולות ולמקסם את התועלת הסביבתית, לרבות ייצור כמויות החלבון הרצויות לנו מבחינה חקלאית".

 

"צריך להבין שכל העולם הולך לכיוון האנרגיה הירוקה ואצות ים יכול להיות מקור משמעותי", מוסיף פרופ' ליברזון, "ובכל זאת אין היום חווה אחת עם היכולת הטכנולוגית והמדעית שהוכחנו. החסמים כאן הם גם מדעיים: אנחנו לא באמת יודעים מה תהיה ההשפעה של חווה ענקית על הסביבה הימית. זה כמו לעבור מגינת ירק ליד הבית לשדות אינסופיים של גידול חקלאי תעשייתי. המודל שלנו מספק כמה מהתשובות, בתקווה לשכנע את מקבלי ההחלטות שחוות כאלה יהיו גם רווחיות וגם ידידותיות לסביבה. ואפשר גם לדמיין תרחישים עוד יותר מרחיקי לכת. למשל, אנרגיה ירוקה. אם היינו יודעים לנצל את קצבי הגידול לאנרגיה באחוזים טובים יותר, היה אפשר לצאת לשיט של שנה עם קילוגרם אצות, לא להזדקק לדלק נוסף מעבר לייצור הביומסה בסביבה ימית".

 

לטפל בבעיה סביבתית וגם להפיק תועלת כלכלית

"החיבור המעניין שאנחנו מציעים כאן הוא גידול אצות על חשבון הטיפול בחנקן", מסכם פרופ' גולדברג. "בעצם פיתחנו כלי תכנוני לבניית חוות של אצות בשפכי נחלים, שיאפשר גם לטפל בבעיה הסביבתית וגם להפיק תועלת כלכלית. אנחנו מציעים תכנון של חוות לגידול אצות בזרימות של נחלים עם הרבה חנקן מחקלאות, כדי לשקם את הנחל ולמנוע מהחנקן להגיע לים וגם כדי לגדל את האצות עצמן למאכל. באופן הזה החקלאות הימית משלימה את החקלאות היבשתית".

 

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה את הפתרון

חומר שמשנה צורה כל פעם באופן אחר

מחקר

22.07.2021
החומר החדשני שמגיב בכל פעם בצורה שונה לאותן הפעולות בדיוק

חוקרים מאוניברסיטת תל אביב פיתחו חומר חדשני שמגיב בשלל צורות ותבניות בכל פעם שמופעלים עליו מאמצים חיצוניים

  • מחקר
  • הנדסה מכנית

לרוב, נהוג לאפיין תכונות מכניות של חומר על ידי הפעלת מאמצי לחיצה ומשיכה על קצותיו. חומרים פשוטים, המוכרים לנו מחיי היומיום, נוטים להגיב באותה הצורה עבור עומס חיצוני נתון.

 

ד"ר קארל מריגן, פוסט-דוקטורנט בקבוצתו של פרופ' יאיר שוקף מבית הספר להנדסה מכנית באוניברסיטת תל אביב, מציע מטא-חומר חדשני ששובר את התבנית הזו. במחקרם שפורסם לאחרונה בכתב העת Physical Review Research, מציעים מריגן ושוקף חומר העשוי מרכיבים בעלי תכונות מכניות שונות: שילובם לכדי סריג מחזורי מניב חומר המסוגל להראות תגובות מכניות שונות ומגוונות, בתגובה לאותו הדרבון בדיוק.

 

מטא-חומר 

לדברי מריגן ושוקף, מטא-חומר זה, שדומה לקרח, "עשוי להוות צעד נוסף בדרך לפיתוח חומרים חדשניים שזוכרים את ההיסטוריה של המאמצים המחזוריים הקודמים שהופעלו עליהם".

 

מטא-חומר הוא מבנה מלאכותי שמורכב מצורה שחוזרת על עצמה, בדומה לחומר טבעי שמורכב מאטומים שמסודרים בצורה מחזורית בגביש. סידור הנדסי מסוים של תאי היחידה החוזרים על עצמם במטא-חומר  מעניק לחומר תכונות ייחודיות שאינן קיימות בחומר הטבעי. רק לאחרונה גילו חוקרים מאוניברסיטת תל אביב, בהם פרופ' שוקף עצמו, מטא-חומר חדש אשר שובר את מגבלות החוק השלישי של ניוטון.

 

סריגים וגבישים מחזוריים בטבע מחולקים לעצמים בסיסיים הנקראים תאי יחידה, ממש כפי שגוף האדם מחולק לתאים. לכל תא יחידה במטא-חומר זה יש שני עיוותים אפשריים הממזערים את האנרגיה המכנית. עקב כך, אזורים שונים בחומר יכולים להימצא באחד משני מצבים יציבים מכנית, בדומה לאזורים עם קיטובים הפוכים במגנט.

 

דפוס הדרבון בקצות החומר מביא לבחירה של מופע מכני מועדף על פני מקטע מסוים. מאחר שכל אזור יכול להימצא במופע אחר, ניתן כך לכוון את הצורה של החלוקה הפנימית למופעים. החלוקה הפנימית הזו היא שמאפשרת עושר עצום של דפוסי תגובה, והמערכת יכולה להיקלע למצבים עמידים שונים כאשר הכוח החיצוני המופעל על הקצוות משתנה בצורה מחזורית בזמן. כך, למערכת גמישות רבה ופוטנציאל לתכנות: ניתן לכוון את התגובות על ידי שינוי המספר והפילוג של מקטעי הלחיצה על שפת החומר, ניתן ללחוץ על מערכות בצורות שונות ועם סימטריות שונות, וניתן ללחוץ על מקטעים שונים במופעים שונים ובעוצמות שונות.

 

"אנו מאוד שמחים ונרגשים מהתוצאות", אומר פרופ' שוקף, "ומקווים כי זו רק תחנת ביניים לקראת פריצות דרך משמעותיות עוד יותר בתחום המטא-חומרים, שהוא מדע עולה ופורח".

 

לכתבה ב YNET

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

זרימות שונות מחוץ לתנאי המעבדה

מחקר

02.05.2021
כיצד ניתן לגשר על הפערים בין טורבולנציה במעבדה ומחוצה לה?

מחקר חדש של הדוקטורנט לשעבר רון שנפ, מבית הספר להנדסה מכנית בא לגשר על הניגוד החד המתקיים בין הזרימות האידאליות לבין הזרימות שמאפיינות את העולם האמיתי.

  • מחקר
  • בוגרים ובוגרות
  • הנדסה מכנית

מאז ראשית שנות ה-2000, אנו עדים להופעתו של גל מחקר אמפירי העוסק בזרימה טורבולנטית, הנובע מהתפתחותן של יכולות חישוביות ומערכות מדידה חדשניות. מבין הנושאים שהתפתחו באופן המשמעותי ביותר ניתן למנות את התיאור הלגראנז'י של טורבולנציה (מסגרת מתמטית לתיאור שדות זרימה), אשר במסגרתו התכונות הסטטיסטיות של הזורם מתוארת לאורך מסלוליהם של חלקיקי זורם אידיאליים.

 

להתפתחותה של המסגרת הלגראנז'יאנית יש השלכות מעשיות משמעותיות, וביניהן היכולת לתאר ולמדל הסעה ופיזור באופן טבעי יותר, בזכות המעקב אחר תנועת הזורם. אכן, פיתוחה של המסגרת הלגראנז’יאנית מסייע לפתרון בעיות כגון חיזוי התפשטותם של כתמי נפט בים, או ריכוז זיהום האוויר בסביבה העירונית ועוד. בהתאם לכך, גל המחקר החדש, אשר נעזר בניסויים ובסימולציות מורכבים שנערכו תחת תנאים אידיאליים, הוליד תגליות פורצות דרך בדבר המנגנונים השוכנים בליבה של הטורבולנציה, החל משבירת סימטריה ועד למורפולוגית שדה הזרימה בסקאלות שונות, החל מפיזור של קבוצות חלקיקים ועד לאינטרמיטיות של הסקאלות הקטנות וכן הלאה.

 

עם זאת, נראה כי ישנם גורמים אשר מקשים על יישומן של תגליות אלה לצורך פתרונן של בעיות אשר ניצבות בפני מהנדסים ב"עולם האמיתי". לרוב, מחקרים התמקדו בזרימות אידיאליות או "נקיות" מדי מכדי לייצג את הזרימות הקיימות בטבע ובתעשייה. באופן ספציפי, תכונותיהן הסטטיסטיות של הזרימות הנבדקות במחקרים האלה הן לרוב הומוגניות, איזוטרופיות ולא משתנות בזמן, מה שאינו נכון לגבי זרימה טורבולנטית המתקיימת מחוץ למעבדה. עקב הניגוד החד המתקיים בין הזרימות האידאליות לבין הזרימות שמאפיינות את העולם האמיתי, לא ברור אם ניתן ליישם את התגליות החדשות לשם פתרון אותן בעיות משמעותיות הניצבות בפני מהנדסים, או כיצד.

 

מגשרים בין שני העולמות

במחקר, ניסו החוקרים מהפקולטה להנדסה באוניברסיטת תל אביב בשיתוף עם החוקרים מהמכון הביולוגי ד״ר ירדנה רביב-בוחבוט וד״ר אייל פטל, לגשר על הפער בין שני העולמות האלה. "לשם כך, ערכנו מדידות לגראנז'יאניות בזרימה שמחקה את חלקה התחתון של שכבת הגבול האטמוספרית, אזור בו מתרחשת אינטראקציה בין הזרימה ובניינים או עצים, בתוך מנהרת רוח סביבתית גדולה" מסביר רון.

מנהרת הרוח הסביבתית במכון הביולוגי

בתמונה: מנהרת הרוח הסביבתית במכון הביולוגי

 

המדידות, שבוצעו תוך שימוש במערכת מדידה חדשנית שפותחה במעבדה לחקר מבנה זרימה טורבולנטית של פרופ' אלכס ליברזון, מהוות מאגר מידע חסר תקדים. תכונותיה של הזרימה הזאת, המכונה זרימת קנופי (canopy flow), הן מאוד לא הומוגניות ולא איזוטרופיות, ולכן היא היוותה עבורנו קרקע פוריה כדי לבחון את תוקפן של התגליות החדשות. מוסיף ומסביר רון "למרבה ההפתעה, תוצאות הניסוי שלנו חשפו את קיומו של עולם פנימי נוסף - למרות שזרימת הקנופי שלנו הייתה כלל לא הומוגנית ולא איזוטרופית, הבחנו שכשאנו מצמצמים את טווח הסקאלות שאותן אנו בוחנים (על ידי בחינת השינויים החלים במהירות הזורם במקום המהירות עצמה), התכונות הסטטיסטיות הלגראנז'יאניות של הזרימה נראות כהומוגניות ואיזוטרופיות בקירוב טוב. כל בדיקה שערכנו איששה את התגלית שלנו, גם עבור חלקיקים בודדים וגם עבור קבוצות של חלקיקים הנעים בו-זמנית. התכונה הזאת של הזרימה, שנקראת איזוטרופיה לוקאלית, היא בעלת חשיבות מכרעת לאופן שבו אנו מבינים את הדינמיקה הלגראנז'יאנית בזרימות לא אידיאליות. למעשה, התגלית שלנו מוכיחה כי הממצאים שעלו מניסויים שבחנו זרימות "נקיות" במעבדה תקפים גם לזרימות מסוימות בעלות טורבולונציה חזקה המתקיימות בעולם האמיתי".

 

פרסומים בכתב עת

"לאחרונה, כתב העת "Journal of  Fluid Mechanics" הכיר בחשיבותן הרבה של התגליות שלנו, ועסק בהן בהרחבה במסגרת מדור "Focus on Fluids" [1]. בנוסף לכך, המחקר שלנו מהווה את אותו גשר אשר חיפשנו ומספק בסיס לפתרון בעיות מורכבות כמו חיזוי התפשטותם של זיהום אוויר או פתוגנים באטמוספרה, ומכאן נובע ערכו האמיתי" מסכם רון.

 

מי אתה רון?

רון שנפ סיים לא מזמן דוקטורט במעבדה של פרופ' אלכס ליברזון במסלול דוקטורט ישיר (ממסלול מסטר ישיר ואחרי הצטיינות דקאן רב שנתית). היום הוא פוסטדוק במכון ויצמן. זכה לאחרונה במלגת רוטשילד ונוסע לציריך לפוסטדוק יוקרתי ב ETH Zurich

 

"לאחרונה פרסמנו מספר מאמרים משמעותיים בנושא של זרימה אוויר באזורים עירוניים, בשיתוף עם המכון הביולוגי לישראל. למכון יש מנהרת רוח סביבתית חדשה ואנחנו גאים להיות הראשונים שמבצעים שם ניסויים. חשוב לציין כי המחקר נתמך על ידי קרן פזי של הועדה לאנרגיה אטומית. אבל כל זה רק הרקע לסיפור - רון פרסם לאחרונה מאמר של מחבר בודד בעיתון הכי חשוב בתחום "מכניקת זורמים" במסלול המהיר שלהם rapidsזהו כבוד גדול לאחד מהבוגרים המוצלחים שלנו בתחום מחקר מאד משמעותי לאיכות חיינו ולשינוי האקלים" מסכם בגאווה פרופ' ליברזון. 

 

קישורים למאמרים

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

דוגמת ניסוי על עצם ירך עם משתל

מחקר

14.02.2021
תוכנה המסייעת בזיהוי מוקדם של שברים ומניעתם

פרופ' יוסיבאש מהפקולטה להנדסה בשיתוף חוקרים ורופאים פיתחו מערכת ממוחשבת מותאמת אישית החוזה את הסיכון לשבר בעצמות ירך בחולי סרטן ומובילה מהפכה אמיתית בעולם הרפואה

  • מחקר
  • הנדסה מכנית

במעבדה למכניקה חישובית וביומכניקה ניסויית בבית הספר להנדסה מכנית באוניברסיטת תל אביב מושם דגש על סינרגיה בין עולם התוכן ההנדסי ויישומים קליניים, לצד מחקרים אנליטיים ופיתוח תוכנה הנדסית. פרופ' זהר יוסיבאש ראש המעבדה ומשמש נשיא האיחוד הישראלי לשיטות חישוביות במכאניקה, נחשב כמומחה בינלאומי באנליזות וניסויים בעצמות ומכניקת השבר, ומקדם שיתוף פעולה עם רופאים ליישום הידע והמחקר במעבדה לשיפור הטיפול בחולים.

 

במעבדה של פרופ' יוסיבאש פותחה תוכנה שמנתחת סריקת סיטי של מטופל ויוצרת הדמיית מחשב של התגובה המכאנית של עצמות בגוף האדם (כאמור עצמות ירך, עצמות זרוע, חוליות עמוד שדרה ועצמות כף הרגל) תוך כדי הפעלה של כוחות פיסיולוגיים. תוצאות הסימולציות אומתו ע"י ניסויים בעצמות של תורמים. מחקרים אלו בוצעו ומבוצעים ע"י סטודנטים למחקר לקראת תארים מתקדמים: דר' ניר טרבלסי, דר' רומינה פליטמן, ודר' לעתיד לבוא יקותיאל כץ וגל דהן. היכולות שפותחו נועדו לסייע לדוגמה בתכנון משתלים כתוצאה משברים (איור 1 מתאר ניסוי והדמייה ממוחשבת של עצם עם משתל).

 

אחד מתחומי המחקר המובילים במעבדה שהגיעו ליישום קליני הוא חיזוי שברים בעצמות ירך עם גרורות סרטניות. מחקר פורץ דרך במימון משרד הבריאות שבוצע במעבדה לפני עשור נועד להעריך את הסיכון לשבר בעצמות עם גרורות. בהתבסס על הצלחת המחקר יושם שימוש באלגוריתמים של אינטליגנציה מלאכותית ושיטות חישוביות במכניקה, פותחה מערכת ממוחשבת מותאמת אישית למטופל המספקת לרופא את רמת הסיכון לשבר ועוזרת למנתח האורתופדי אונקולוגי לקבל החלטה אם נדרש ניתוח מניעתי בחולים אלו. המערכת שפותחה עם דר' ניר טרבלסי ממכללת סמי שמעון, עברה ניסויים קליניים רטרוספקטיביים ויכולות החיזוי אומתה בחולים באופן מאוד מוצלח בהובלתו של דר' אמיר שטרנהיים, ראש היחידה הלאומית לאורתופדית אונקולוגית בביה"ח איכילוב.

 

כיום המערכת הממוחשבת מסייעת לחיזוי שברים עתידיים ומניעתם על רקע גרורות בעצם ומותקנת בבית החולים איכילוב ביחידה הלאומית לאורתופדיה אונקולוגית. טכנולוגיה זו מאפשרת דיוק והתאמה אישית לחיזוי סיכון לשבר ומיקומו ומובילה מהפכה אמיתית בעולם הרפואה!. המערכת קיבלה אישור רגולטורי של האיגוד האירופי CE ואמ"ר ממשרד הבריאות ומהווה פריצת דרך בעידן הרפואה המותאמת אישית.

איור 2: פרופ' יוסיבאש מכין עצם ירך לניסוי

 

לינק לכתבה ב TheMarker: https://www.themarker.com/labels/orthopedics/1.9508059

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

נדב כהנוביץ' מדגים את המכשיר הלביש (צילום: יונתן בירנבאום)

מחקר

02.02.2021
הרובוט שפועל מתחושה פנימית

ד"ר אבישי סינטוב פיתח מכשיר לביש היודע לזהות תבניות שונות של תנועות שרירי האמה דרך תנועות אינטואיטיביות ולחזות כוונת משתמש בעת שיתוף פעולה אדם-רובוט

  • מחקר
  • הנדסה מכנית

שיתוף פעולה אפשרי בין אדם לרובוט מחייב הבנה אינטואיטיבית ומתמשכת של תנועה אנושית במשימות משותפות. 

 

רוב הפעולות האינטואיטיביות של בני אדם הן פעולות שאדם הורגל לבצען באופן מסוים מילדות וכך גם הוא יכול לחזות תנועה של בני אדם אחרים.

 

כאשר אדם מסייע לחברו, פעולות מסוימות יכולות להתבצע אינטואיטיבית ללא תקשורת ורבאלית למשל הגשת כוס קפה תגרום לאדם מולך להושיט באופן אינטואיטיבי את ידו ולתפוס את הכוס. בעצם המסייע מתבונן בידיו של חברו ויכול לחזות את כוונתו דרך זיהוי הכלים שהוא אוחז ומסלול תנועתו – ואז לבצע פעולות תומכות. מימוש עקרון זה ע"י רובוט הוא הבסיס לעבודת רובוטים עם בני-אדם.

 

פרסום מאמר

לאחרונה, התקבל בכתב העת IEEE Robotics & Automation Letters מאמרם של נדב כהנוביץ', סטודנט לתואר שני בהנדסה מכנית וד"ר אבישי סינטוב.

 

ד"ר סינטוב עומד בראש מעבדת הרובוטיקה ROB-TAU בבית הספר להנדסה מכנית של אוניברסיטת תל אביב, בה הוא וצוותו עוסקים בחיזוי כוונת אדם בעת שיתוף פעולה עם רובוטים.

 

במאמרם הראו החוקרים כי בעזרת מכשיר לביש פשוט וזול, ניתן לזהות תבניות שונות של תנועות שרירי האמה. המכשיר מכיל 15 חיישני כוח זולים אשר נצמדים לעור האמה וחשים את התכווצות השרירים בעת אחיזה של חפצים שונים וביצוע פעולות.

בעזרת אלגוריתמי למידת מכונה, זרוע רובוטית יכולה לקבל מידע על החפץ הנאחז בזמן אמת ובדיוק גבוה, ולחזות את כוונת המשתמש. האלגוריתם כולל רשת עצבית המאומנת לסווג את המידע מהמכשיר ותהליך איטרטיבי לשיפור דיוק החיזוי עם כניסת מידע חדש בזמן אמת.

החוקרים הראו שהאלגוריתם מאפשר חסינות (רובסטיות) למיקום והידוק המכשיר על האמה. חיזוי כוונת המשתמש מאפשר תכנון תנועה של הרובוט לסיוע יעיל ומהיר לאדם. גישה זאת מאפשרת עבודה אינטואיטיבית עם רובוט ללא שימוש בתקשורת ורבאלית וללא מצלמות.

רובוט מסייע למשתמש הלובש את המכשיר לאחר זיהוי החפץ ביד

בתמונה: רובוט מסייע למשתמש הלובש את המכשיר לאחר זיהוי החפץ ביד

 

ראייה לעתיד

טכנולוגיה זאת תוכל בעתיד לאפשר סיוע לבעלי מוגבלויות בפעולות יומיומיות – לדוגמא, זרוע רובוטית תומכת המעוגנת על כיסא גלגלים, עבודה לצד פועלים במפעל ואף סיוע לרופאים בהליכים רפואיים –  רובוט שיחליף אח/ות ויסייע למנתח.

 

המחקר מתבצע במימון הקרן הישראלית למדע (ISF).

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

הנחת תרחיף הוירוס על משטחים שונים

מחקר

17.01.2021
מחקרה של ד"ר אינס צוקר מהפקולטה להנדסה ומדעים מדויקים, מראה כי ניתן לנטרל

המחקר נעשה בשיתוף עם חוקרים נוספים מהאקדמיה ופורסם במגזין: ​"Environmental Chemistry letters"

  • מחקר
  • הנדסת סביבה
  • הנדסה מכנית

מגפת ה- COVID-19 השפיעה קשות על בריאות הציבור ברחבי העולם. נוצרה בהלה כלל עולמית ומדינות רבות, בהן ישראל, נקטו במדיניות של בידוד, ביטול טיסות, ריבוי בדיקות לאבחון חולים וחיטוי משטחים ע"י חומרי חיטוי שונים במטרה למנוע את התפשטות הנגיף.

עדויות להעברת SARS-CoV-2 באמצעות אירוסולים ומשטחים הדגישו את הצורך ביעול שיטות החיטוי הזמינות. אחת מדרכי ההתמודדות שנצפו עוד בתחילת ההתפרצות, הייתה ריסוס של חומרי חיטוי בסביבתם הקרובה של אנשים.

 

ד"ר אינס צוקר מבית הספר להנדסה מכנית ומבית הספר פורטר ללימודי סביבה ומנהל המעבדה ZuckerLab, ד"ר ינון יחזקאל, אינם ממתינים לירידה בתחלואה ולוקחים חלק במאבק במגפת הקורונה. בימים כתיקונם, השניים מפתחים חומרים ותהליכים לטיפול בסביבה. בין השאר, הם משתמשים באוזון לפירוק מזהמים במים. "אנו מפיקים אוזון מחמצן גזי בעזרת התפרקות חשמלית, ומגיעים לריכוזי אוזון גבוהים בגז, שבדרך-כלל משמשים אותנו לחמצון של כימיקלים במים – וכעת, גם לקטילה של יצורים חיים", מסבירה ד"ר צוקר.

 

האוזון בעיקר מוזכר בהקשר של שכבת ההגנה שהוא יוצר בסטרטוספירה (השכבה האמצעית באטמוספירת כדור הארץ), המגנה עלינו מפני קרינה אולטרה סגולה - UV - מסוכנת הנמצאת באור השמש. ככלל, אוזון נחשב כגז רעיל וכשנוצר בסמוך לפני הקרקע, הוא עלול להשפיע לרעה על הבריאות ולכן נחשב כמזהם אוויר. אולם, ניתן גם להשתמש ביכולות החמצון של האוזון להסרת מזהמים בסביבה באופן בטוח לשימוש בעזרת תכנון הנדסי יעיל. כעת, ד"ר אינס צוקר וצוות המעבדה שלה הוכיחו גם את הפוטנציאל של האוזון הגזי לחיטוי חללים מנגיף הקורונה במהירות וביעילות.

 

ד"ר צוקר חברה לד"ר משה דסאו מהפקולטה לרפואה בבר אילן ויחד עם ד"ר יעל לצטר ממכללת עזריאלי בירושלים, הצליחו להראות את הפוטנציאל של אוזון גזי לחיטוי חללים מנגיף הקורונה במהירות וביעילות. ממצאי המחקר הראשוני פורסמו היום בג'ורנל Environmental Chemistry letters.

היתרון של אוזון גזי אל מול המחטאים הנפוצים (כמו אלכוהול ודומיו), הוא היכולת לפעול לחיטוי כלל החפצים והאויר בחדר ולא רק על-פני משטחים גלויים. 

בתמונה מימין לשמאל: ד"ר יואל אלטר, ד"ר משה דסאו, ד"ר ינון יחזקאל, וד"ר אינס צוקר

 

בין השאר, החוקרים הצליחו למצוא מודל לוירוס שהוא בטוח לשימוש ואינו מדבק, שיכול לשמש להמשך עבודתם על קטילת הוירוס בעזרת אוזון. "הדרך לפיתוח מתקן נוח לחיטוי חללים בעזרת אוזון נסללה, וכעת אנו ממשיכים את עבודתינו כדי לבחון את התנאים האופטימליים לחיטוי משטחים ואירוסולים בעזרת אוזון", מסכמת ד"ר צוקר.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אולטרה סגול

מחקר

29.12.2020
קטילה של וירוס הקורונה בעזרת נורות של לדים בתחום האולטרה-סגול

מאמרה של פרופ' הדס ממן, ראשת התכנית להנדסת סביבה בשיתוף עם פרופ' יורם גרשמן ביוכימאי ממכללת אורנים, ד"ר מיכל מנדלבוים מנהלת המרכז הלאומי לשפעת ונגיפי נשימה בתל השומר ונחמיה פרידמן מתל השומר התקבל ופורסם ב - Journal of Photochemistry and Photobiology B: Biology

 

  • מחקר
  • הנדסת סביבה
  • הנדסה מכנית

עם העליה העולמית במגפת הקורונה (COVID-19) הנובעת מוירוס הקורונה עולה גם הצורך לפתח ולהדגים טכנולוגיות חיטוי חדשניות לצורך קטילה של נגיפים אלה.

 

איך נדבקים בוירוס? 

הוירוס שמהווה הגורם הסיבתי של המחלה COVID-19 (SARS-CoV-2) מדבק לא רק באמצעות טיפות נשימתיות (אירוסולים), אלא יכול להתפשט גם דרך משטחים מזוהמים מריריות האף, הפה והעיניים. יתר על כן, לאחרונה הוצע כי יתכן פיזור אווירני של SARS-CoV-2, אם כי טרם הובאו ראיות ברורות להעברה כזו. לאחרונה הודגמה גם יכולתו של הוירוס לשרוד באירוסולים במשך 3 שעות לפחות ועד 72 שעות על משטחי פלסטיק, דבר המצביע על סיכון לזיהום ארוך טווח.

 

פיתוח מהפכני לקטילת הוירוס

הקרנה באור אולטרה-סגול ultraviolet היא שיטה נפוצה לקטילה של מיקרואורגניזמים פתוגניים (גורמי מחלות), כולל וירוסים. קטילה על ידי אור אולטרה-סגול עלולה להתרחש באמצעות כמה מנגנונים, ביניהם פגיעה בחומצות גרעין, חלבונים או ייצור פנימי של רדיקלים של חמצן.

 

"במחקר שביצענו נמצא ששילובי UV-LED באורכי גל שונים משפרים את יעילות הקטילה ומונעים התאוששות של מחוללי מחלות במים על ידי הפעלת מספר רב של מנגנוני נזק. שיטת חיטוי זו נמצאה יעילה עבור נגיפים וחיידקים רבים כגון: אדנווירוס, פוליו-וירוס, איקולי כולל SARS-COV-1" מסבירה פרופ' ממן. 

 

מנורות ה- UV הסטנדרטיות מכילות כספית, ולכן מנסים לחפש אלטרנטיבות. נורות לדים (דיודות פולטות אור אוlight emitting diodes), מהוות מקור אור חדש עם יתרונות רבים.

בשל גודלן הקטן, זמן תפעול מידי ודרישת מתח נמוכה נורות הלד מאפשרות  הפעלה באמצעות סוללה או פאנל סולארי. עם זאת לנורות אלה שטף פוטונים נמוך וככל שיורדים באורך הגל  מחיר הנורות עולה. מגבלות אלה הופכות את השימוש בנורות באורכי גל גבוהים יותר אטרקטיביות יותר. עד כה אף מחקר לא בדק את יעילות נורות לדים באורכי גל שונים על קטילה של נגיפי קורונה אנושיים. קבוצת המחקר השתמשה בווירוס הקורונה האנושי  (HCoV-OC43)לבחירת האורך גל האפקטיבי ביותר.

 

ממצאי המחקר והמשך פיתוח

קבוצת המחקר מצאה כי לאורך גל של 280 ננומטר יעילות קטילה יחסית דומה ל- 260 ננומטר, כאשר מנת קרינה של 10 mJ/cm2 מושגת בפחות מחצי דקה ומתקבל מעל 99.9 אחוז קטילה. התוצאות הללו משמעותיות כי העלות של לדים ב- 280 ננומטר נמוכה בהרבה משל כאלו באורכי גל נמוכים יותר, והן יותר זמינות בשוק, ולכן מתאפשר שילוב של נורות כאלה לצורך חיטוי מים, משטחים, שילוב עם מזגנים לחיטוי אוויר וכד'. בנוסף, החוקרים יתחילו בקרוב מחקר עם פרופ' קלארק מאוניברסיטת נורת ווסטרן בארה"ב לפיתוח של משטחי מגע high touch screen עם קטליסט שקוף משופעל בנורות לדים בתחום האור הנראה לקבלת משטחים עם יכולת חיטוי עצמי.

התמונה מראה את היעילות של נורות לדים לחיטוי וירוס הקורונה האנושי

התמונה מראה את היעילות של נורות לדים לחיטוי וירוס הקורונה האנושי

 

צוות החוקרים מאחורי הפיתוח

המחקר בוצע במשותף עם פרופ' יורם גרשמן ביוכימאי ממכללת אורנים, ד"ר מיכל מנדלבוים מנהלת המרכז הלאומי לשפעת ונגיפי נשימה בתל השומר, נחמיה פרידמן מתל השומר, ופרופ' הדס ממן, ראשת התוכנית להנדסת סביבה בבית הספר להנדסה מכנית, אוניברסיטת תל אביב. המאמר התקבל ב Journal of Photochemistry and Photobiology B: Biology.

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

תרשים של הפעולה

מחקר

02.12.2020
מטא-חומרים טופולוגים מכנים פורצים את מגבלות החוק השלישי של ניוטון

המחקר פורסם בכתב העת היוקרתי:
​"Physical Review Letters"

  • מחקר
  • הנדסה מכנית

 

מאמרם של ד"ר לאה ביילקין-סירוטה ופרופ' יאיר שוקף מבית הספר להנדסה מכנית בשיתוף עם ד"ר רוני אילן וד"ר יואב לחיני מבית הספר לפיזיקה ולאסטרונומיה פורסם בכתב העת היוקרתי Physical Review Letters

​שינוי נקודת מבט יכול לחולל פלאים. זה נכון במיוחד כאשר מדובר בהבנת תכונות של חומרים באמצעות טופולוגיה, "רעיונות המחוללים מהפכה בפיזיקה של חומר מעובה", לדבריה של ד"ר רוני אילן מבית הספר לפיזיקה ולאסטרונומיה באוניברסיטת תל אביב. טופולגיה והשפעתה על תכונות פיזיקליות של חומר הוא תחום מחקר, אשר צבר תאוצה בפיזיקה של חומר מעובה. לאחרונה רעיונות אלו התפשטו לתחומים נוספים, כולל אופטיקה ופוטוניקה, כמו גם אקוסטיקה ומערכות מכניות אחרות, בהן קיימות עוד מורכבויות.

 

גלים במערכות מכניות יכולים לספק תובנות לגבי הפעולה של מערכות קוונטיות, כולל תופעות טופולוגיות. אולם, בנסיון לממש חלק מתופעות אלו חוקרים נתקלו במחסום בדמות החוק השלישי של ניוטון, אשר קובע שכל פעולה חייבת לגרור תגובה נגדית שווה בגודלה ומנוגדת בכיוונה. קיימות תופעות קוונטיות שיישום שלהן באנלוגיה מכנית דורש שבירה של ההופכיות הזו. כעת, חוקרים מאוניברסיטת תל אביב מצאו דרך ליישם התנהגות לא ניוטונית במערכות מכניות, ובכך לפתח אנלוג מכני לתופעות טופולוגיות קוונטיות מורכבות. הישג זה עשוי לספק תובנות חדשניות גם לגבי מערכות מכניות וגם לגבי מערכות קוונטיות, אשר הטופולוגיה מכתיבה את התנהגותן.

 

צוות החוקרים שילב מומחיות ממספר תחומים שונים – המומחיות של ד"ר רוני אילן בתיאוריה של מצב מוצק, של פרופ' יאיר שוקף – מבית הספר להנדסה מכנית - בחומר מעובה רך, של ד"ר יואב לחיני - מבית הספר לפיזיקה ולאסטרונומיה - בפוטוניקה טופולוגית ומערכות מורכבות, ולבסוף, החוליה החסרה שאיחדה הכל, הרקע של ד"ר לאה ביילקין-סירוטה - מבית הספר להנדסה מכנית - בתורת הבקרה. "איכשהו כולנו התכנסנו כשלאה הגיעה, והתחלנו לדבר על הדברים האלה", אומר לחיני.

 

שבירת סימטריות

הקשיים המופיעים כשמנסים לתכנן אנלוגיות מכניות למערכות קוונטיות קשורים לשבירת סימטריה. במערכות ששוברות סימטריה מרחבית, הדבר יכול לבוא לידי ביטוי בכך שכוחות האינטראקציה בין רכיבי המערכת הם שונים עבור כיוונים שונים, בדומה למה שקורה למשל באפקט הול הקוונטי. יישום תופעות כאלה במערכות מכניות הוא די טבעי, מכיוון שכדי לשבור סימטריה מרחבית אפשר פשוט לשחק עם הגיאומטריה. אבל שבירת סימטריה בזמן, הדרושה למימוש תופעות טופולוגיות מסוימות, מתבררת כסיפור הרבה יותר מורכב.

 

ברמה המיקרוסקופית, מכניקה היא הפיכה בזמן - אם נצלם שני חלקיקים שנעים זה לקראת זה ומתנגשים, ואז נריץ את הסרט אחורה, עדיין נקבל התנהגות שנראית הגיונית מבחינה פיזיקלית של שני חלקיקים שנעים זה לקראת זה ומתנגשים. אולם, התופעות הקוונטיות שמופיעות למשל כתוצאה מאינטראקציה עם שדה מגנטי, שוברות את הסימטריה הזו. עכשיו, אם נריץ את הסרט אחורה, נקבל משהו שמתאר דינמיקה אשר אינה סימטרית להיפוך בזמן. תרגום של תופעות כאלה למערכת מכנית דורש חוסר הופכיות, שמשמעה שכבר אין תגובה שווה לכל פעולה, וזה משהו שמערכות מכניות פשוט לא עושות באופן טבעי.

 

"אנשים עקפו את המחסום הזה בדרכים מורכבות, כמו למשל על ידי ייצור זרימות סיבוביות, שילוב סביבונים מסתובבים, או מורכבויות אחרות שבסופו של דבר מדמות ספינים במערכות קוונטיות", מסביר שוקף. הבעיה היא שהוספת סביבונים או כל דבר מסתובב אחר למשהו שאין בו סיבוב במערכת הקוונטית מוסיפה דרגות חופש שלא קיימות במערכת אותה אנו רוצים לדמות. כך שלמרות שמבחינות מסוימות המערכת מגיבה כמו המערכת הקוונטית הלא הופכית, קשה להימנע מתופעות לוואי לא רצויות הנובעות מדרגות החופש הנוספות האלה. כאן, למומחיות של ד"ר ביילקין-סירוטה בתורת הבקרה היתה יתרון עצום.

 

אינטראקציות וירטואליות

כפי שד"ר ביילקין-סירוטה מסבירה, תורת הבקרה הוא תחום בהנדסה מכנית, שמשתמש בכלים מתמטים בשביל לתכנן אלגוריתמים שייצרו התנהגות דינמית של מערכות בתגובה לעירור חיצוני. תורת הבקרה מאפשרת לממש התערבויות שקיימות לדוגמא במכוניות חכמות או אוטונומיות. באופן מסורתי כאשר מכוניות מתנגשות, הפגושים של המכוניות סופגים את המכה באופן סימטרי, אולם במכונית חכמה, מצלמה אומדת את המרחק למכונית שלפנינו ומתערבת על ידי הפעלת הבלמים כשאנחנו קרובים מדי. כמו שפרופ' שוקף מסביר, זו כבר דוגמא לאינטראקציה לא הדדית בגלל שאין כאן תגובה שווה והפוכה של המכונית שלפנינו, כפי שהיה קורה אילו הפגוש היה עוצר אותנו. החוקרים הצליחו ליישם עקרונות דומים מתורת הבקרה כדי לתכנן מטא-חומר מכני אקטיבי עם אינטראקציות לא הדדיות בין רכיביו.

 

כדי לממש עקרונות אלו, ד"ר ביילקין-סירוטה וצוות המחקר תכננו מטא-חומר מכני המורכב ממערך מחזורי של משקולות מחוברות הנעות רק למעלה ולמטה, כך שיש רק דרגת חופש אחת לכל משקולת. אולם, במקום שהדינמיקה של המערכת תיקבע על ידי חוקי התנועה של ניוטון, היא נקבעת על ידי בקר הממוקם מעל לכל משקולת. הבקר מודד את המיקום של המשקולות השכנות, מחשב כיצד המשקולת הזו היתה מגיבה אילו היתה ביניהן אינטראקצייה לא הדדית, ואז מפעיל את המשוב החוזר הדרוש בשביל לייצר את התגובה הזו באופן מכני. "החלפנו את האינטראקציות הטבעיות של קפיצים בין המשקולות עם אינטראקציות וירטואליות אם תרצו", אומר ד"ר לחיני, ״ובכך יצרנו תווך אקטיבי לא רגיל המשפיע על גלים מכנים במערכת".

 

סימולציות שהחוקרים ביצעו של מטא-חומר עם בקרה אקטיבית הראו שניתן לדמות באמצעותו את מודל הלדיין, שמתאר את אפקט הול הקוונטי בהיעדר שדה מגנטי, מודל שהיה בלתי אפשרי לממש באמצעות רכיבים מכנים פסיבים. בנוסף, הדבר נעשה "ללא חלקים מסתובבים" כמו שד"ר ביילקין-סירוטה מדגישה, ומוסיפה: "ניתן לממש ככה תופעות טופולוגיות שונות על אותה הפלטפורמה". ואכן, החוקרים הצליחו לממש כמה מודלים קוונטיים שונים עם אתה חומרה, רק באמצעות שינוי של אלגוריתם הבקרה.

בתמונה: תרשים של הפעולה

 

אמנם היו כבר הצלחות במימוש מטא-חומרים אקטיבים במימד אחד, אבל העבודה הנוכחית פורצת דרך במימוש של מטא-חומרים דו-ממדיים עם בקרה אקטיבית. כעת ד"ר ביילקין-סירוטה עובדת על מימוש של מטא-חומר כזה באמצעות גלים אקוסטים, אשר קל יותר לשלוט עליהם, והם עשויים לספק תובנות אינטואיטיביות לגבי מכניקת הקוונטים. במקרה זה, גל קול נע בתווך שבין שני לוחות מקבילים, עליהם ממוקמים מיקרופונים, בקרים ורמקולים, אשר יחד מייצרים אינטראקציות לא הדדיות. למערכת יכולות יישומיות, כמו בידוד אקוסטי או הסתרה אקוסטית. אבל החוקרים מקווים כי האנלוגיה המכנית שלהם תתרום להבנה של מצבים טופולוגיים באופן כללי. "אם דברים מתמפים בדיוק אחד לאחר, זה לא מעניין", אומר פרופ' שוקף. "ברגע שהמיפוי לא מושלם, תופעות חדשות ומענינות מופיעות". ד"ר לחיני מוסיף כי "המערכת המכנית יכולה לשלב באופן נשלט רכיבים רבים שקשה או בלתי אפשרי להשיג אותם במצב מוצק – אינטראקציות, אי-לניאריות, פוטנציאלים דינמים, תנאי שפה שונים, ועוד. מערכות כאלו יאפשרו לנו ללמוד איך טופולוגיה מיתרגמת למצבים חדשים, ולהעמיק את ההבנה של תופעות טופולוגיות".

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

ד"ר אינס צוקר והמסטרנט כפיר שפירא

מחקר

01.11.2020
טיפול מבוסס ננו להסרת מזהמים במים

מאמרה של ד"ר אינס צוקר פורסם לאחרונה בכתב העת היוקרתי ACS Applied Materials and Interfaces

 

  • מחקר
  • הנדסה מכנית
  • טיפול במים

ד"ר אינס צוקר פרסמה לאחרונה מחקר פורץ דרך בנושא טיפול מבוסס ננו להסרת מזהמים במים בכתב העת היוקרתי ACS Applied Materials and Interfaces.

 

ד"ר צוקר החלה את מחקרה על שימושים וסיכונים של חומרים ננומטרים דו-מימדיים בהיבט סביבתי במסגרת פוסט הדוקטרט שלה באוניברסיטת ייל. כחוקרת חדשה בבית הספר להנדסה מכנית בפקולטה להנדסה של אוניברסיטת תל אביב, היא מובילה את המעבדה לננוטכנולוגיה סביבתית שבראשותה בפיתוח חומרים מתקדמים לטיפול במים ובחינת הסיכונים הסביבתים הכרוכים בכך הן בשלב ביצור והן לאחר שימוש בהם. 

 

הסרת זיהומי כספית ממים

במחקר הנוכחי, צוקר פיתחה שיטות לגידול מוליבדינום גופרתי (MoS2, molybdenum disulfide) על-גבי מצע של סיבי פחמן, ובחנה את יכולת החומר המרוכב להסיר זיהומי כספית ממים. זיהומי כספית (בעיקר ממקורות תעשייתים) מסוכנים לבריאות האדם והאקוססטמה ויש עניין רב בהסרה סלקטיבית ויעילה שלהם. שיטות הגידול שנבחנו אפשרו קבלת ציפויי MoS2 בצורות, מבנים ועומסים שונים על-גבי הסיבים. לאחר בחירה בשיטה שמאפשרת הסרה מהירה ובטוחה של כספית, הציפויים גם עברו מודיפיקציות כדי למקסם את היכולות ספיחת הכספית על-ידי השתלת 'הפרעות' בזמן גידול שכבת ה MoS2. החומר שפותח יכול לשמש להסרת מזהמים ממים במתקני טיפול בסקאלה נרחבת, משום שהוא בטוח ונוח לשימוש בתצורה המעוגנת שלו על גבי מצע סיבי או אחר. ד"ר צוקר הנחתה את הדוקטורנטית קמרין פאזי באוניברסיטת ייל במחקר זה, והשתיים המשיכו את עבודתן בשלט רחוק לאחר חזרתה של צוקר לישראל.

 

ד"ר צוקר זכתה לאחרונה במימון המשך המחקר במסגרת "ניצוץ קלינטק" של משרד המדע והטכנולוגיה, ויחד עם המסטרנט כפיר שפירא מפתחת כיום מתקן טיפול מולטיפונקציונלי להסרת מזהמים אורגנים ואנאורגנים ממים על בסיס שכבות מוליבדינום דיסולפיד.

 

לינק למאמר 

לינק לכתבה ב Ynet

לינק לציוץ בנושא המאמר

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

פיתוח מכונת הנשמה

מחקר

29.10.2020
קוד לאוויר לנשימה

צוות חוקרים מהפקולטה להנדסה אוניברסיטת תל אביב פיתחו כלי תוכנה, עם קוד פתוח למפתחים שיאפשרו לנבא ביצועים של מכונות הנשמה שמחוברות למטופלים במצבים שונים.

  • מחקר
  • נשימה
  • הנדסת חשמל
  • הנדסה מכנית

 

עם פרוץ מגיפת הקורונה התארגנה קבוצה של חוקרים מהפקולטה להנדסה באוניברסיטת תל אביב במטרה לעזור במאמץ המלחמתי. פרופ' אלכס ליברזון מבית הספר להנדסה מכנית וד"ר גדעון שגב מבית הספר להנדסת חשמל מובילים צוות לפיתוח של כלי תוכנה עם קוד פתוח למפתחים שיאפשרו לנבא ביצועים של מכונות הנשמה שמחוברות למטופלים במצבים שונים. מטרת הפרויקט היא לאפשר לקבוצות שמפתחות מכונות הנשמה "ביתיות" לבדוק כיצד המכונה שלהם תעבוד עם חולים ובנוסף לאפשר פיתוח מהיר של מערכות שליטה ובקרה למכונות הנשמה.

 

בקרת זרימת האוויר

כיום מדברים הרבה על ייצור של מכונות הנשמה "פשוטות" או ביתיות. הבעיה העיקרית עם מכונות כאלו היא שאין להן את כל מערכות הבקרה המתוחכמות שיש במכונות ההנשמה הרגילות. לדוגמא, במכונות הנשמה יש מספר חיישנים המאפשרים לשלוט בנפח האוויר שנכנס למטופל בכל נשימה ובלחץ האוויר המינימלי והמקסימלי בריאות שלו. עם זאת, העלות של חיישנים למדידת כמות האוויר שנכנס היא גבוהה וגם קשה להשיג כאלו היום. כתוצאה מכך, במכונות ההנשמה הפשוטות שמציעים לבנות היום, קשה לדעת כמה אוויר המטופל מקבל. "כאן הכלים שאנחנו מפתחים נכנסים. התוכנה שאנחנו פיתחנו מדמה את זרימת האוויר במכונה ובמטופל. היא לוקחת בחשבון פרמטרים כמו המצב הרפואי של המטופל ואת מספר הנשימות שלו בדקה והיא מחשבת את זרימת האוויר והלחץ בכל נקודה במכונה ובריאות של המטופל" מספר ד"ר שגב.

 

מבעיה לפתרון

בעזרת כלי כזה, מפתחים יכולים לתכנן טוב יותר את המערכות שלהם ולהתייחס לבעיות כמו: איך המכונה תעבוד עם מטופלים שונים? כיצד מוודאים שהמכונה מסונכרנת עם הנשימות של המטופל? או האם ניתן להציב חיישנים פשוטים במקומות שונים בשביל להעריך כמה אוויר המטופל מקבל?

 

בשלב הראשון, בנינו תוכנה שמדמה את הפעולה של מערכת המנשמה. מערכת הנמצאת בפיתוח ע"י צוות הכולל מהנדס מערכת, רופא, מהנדס חשמל, מתכנת ומתנדבים נוספים שעוזרים בכל הנדרש: מרדכי חלפון, ד"ר אלעד גרוזובסקי, רונן זילברמן, גיל בכר, עברי שפירא, רועי דרנל, סתיו בר-ששת. המנשמה מיועדת להקל על חולים מונשמים שאינם מורדמים. "יחד עם צוות הפיתוח של המנשמה, ערכנו סידרה של ניסויים שאפשרו לנו לכייל את החישובים שלנו ועל ידי כך לאפשר לתוכנה לנבא כיצד המכונה תעבוד עם מטופלים במצבים שונים. השלב הבא יהיה להתאים את החישובים למערכות שמבוססות על מנשם מסוג אמבו (מין בלון שלוחצים עליו כדי להכניס אוויר לריאות). יש הרבה מאוד אנשים בעולם שעובדים על מכונות מהסוג הזה כך שאנחנו חושבים שתוכנה כזו תוכל לעזור להם בצורה משמעותית" מסביר ד"ר שגב

 

על ה Software

התוכנה שלנו מבוססת על כלי תוכנה סטנדרטיים לתכנון מערכות לזרימת אוויר. היא פותרת את משוואות הזרימה בהינתן המצב של המטופל והפרמטרים של בקרת הנשימה שאנחנו בוחרים. התוצאה של החישוב היא איך הלחץ וזרימת האוויר משתנה  בריאות (או בכל נקודה אחרת במערכת) עם הזמן. ערכנו ניסויים עם ריאה מלאכותית והשווינו את תוצאות הניסוי לחישובים במצבים שונים. היה מאוד יפה לראות שאחת שמכוונים את החישוב, הוא מסוגל לתאר את ביצועי המערכת במגוון רחב של מצבים. מאחר ואנחנו עוסקים רק בחישובי הזרימה, החישוב לא מסוגל לתת מידע על התפתחות המחלה עצמה. עם זאת, חישובים כאלו יאפשרו למפתחים לכוון את מערכות ההנשמה שלהם כך שייצרו את הפרמטרים האופטימאליים עבור כל מטופל ועל ידי כך לשפר את המצב שלו.

 

"מספר המונשמים בארץ הוא די נמוך בהשוואה למדינות רבות בעולם. על כן, לשמחתנו, נראה שלא יהיה בארץ צורך במכונות הנשמה פשוטות. עם זאת, זה ממש לא המצב במקומות רבים בעולם. יש מדינות רבות בעולם השלישי שבכל המדינה יש פחות מעשר מכונות הנשמה. במדינות כאלו יש חוסר קיצוני במכונות הנשמה גם בימים שבשגרה ועל אחת כמה וכמה עכשיו עם התפרצות מגפת הקורונה. אנחנו מקווים שהפעילות שלנו תוכל לעזור במשהו בכל המקומות האלו" מסכם ד"ר שגב

 

לינק קישור לתוכנהhttps://osf.io/befqm/

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>