מחקרים

RESEARCH

מה מעניין אותך?

כל הנושאים
מחקר
בוגרים ובוגרות
הנדסת חשמל
הנדסת סביבה
הנדסת תעשייה
הנדסה מכנית
הנדסה ביו-רפואית
מדע והנדסה של חומרים
יצור אתנול רפואי מפסולת חקלאית לחיטוי וירוס הקורונה

מחקר

25.05.2020
ייצור אתנול רפואי מפסולת חקלאית לחיטוי

פרופ' ממן מהפקולטה להנדסה אוניברסיטת תל אביב, יחד עם הדוקטורנט רועי פרץ ופרופ' גרשמן מאוניברסיטת חיפה-מכללת אורנים, הצליחו לייצר אתנול מפסולות מגוונות בתהליך חדשני על מנת שמדינת ישראל תוכל לייצר בעצמה אלכוהול ללא חשש ממחסור   

  • מחקר
  • הנדסה מכנית

המאבק נגד נגיף הקורונה מתחיל בשמירה על היגיינה וחיטוי, לכן עם התפרצות וירוס הקורונה עלתה הדרישה לאלכוהול לצורך חיטוי. אלכוהול (אתנול) הוא חומר החיטוי הנפוץ ביותר ומשמש לייצור אלכוג'ל, ספטול ודומיהם. נכון להיום, בישראל אין ייצור מקומי של אתנול וב-2018 ייבאה ישראל 23,000 טונות של אתנול, כאשר מרביתו מיוצר ממקורות מזון ראויים לבני אדם כגון תירס. נכון להיום, מדינת ישראל תלויה לחלוטין ביבוא של אתנול, והבעייתיות הופכת למשמעותית יותר בעת מגפות כאשר יש הסגרים כללים, ומגבלות ייבוא גדולות. 

 

מחסור בחומרי חיטוי בישראל

כחלק מעבודת המחקר של פרופ' ממן יחד עם הדוקטורנט שלה רועי פרץ ושאר צוות החוקרים במעבדה, עוסקים בטיפול בפסולות המהוות מטרד לאדם ולסביבה, והפיכתה לאלכוהול, מוצר שימושי כתחליף דלק למשל. עם התפרצות המגפה, ניכר כי יש מחסור גדול של חומרי חיטוי בארץ. "הופעתנו לגלות כי מדינת ישראל, נכון להיום, תלויה לחלוטין בייבוא אלכוהול לצורך חיטוי. מכאן ועד בחירת הנושא למחקר לטובת ייצור אלכוהול כחומר חיטוי למען המאבק בקורונה היה קצר.

 

במחקר משותף שמומן בימים אלה ע"י משרד המדע, הצוות של פרופ' ממן מבית הספר להנדסה מכנית באוניברסיטת תל אביב ופרופ' גרשמן באוניברסיטת חיפה-מכללת אורנים, הדגימו ייצור אתנול מפסולות מגוונות כגון גזם עירוני, בעזרת טיפול קדם באוזון והמרתה לאלכוהול בתהליך חדשני. בכך מדינת ישראל תוכל לייצר בעצמה אלכוהול ללא חשש ממחסור היות וזה מיוצר מפסולת. 

תמונה ממפעל נייר חדרה

תמונה ממפעל נייר חדרה

 

ייצור אתנול מפסולות מגוונות

פרופ' ממן, ראשת התוכנית ללימודי הנדסת סביבה לתארים מתקדמים בפקולטה להנדסה מסבירה כי "פריצת הדרך שלנו בכך שהצלחנו לייצר אתנול בצורה אפקטיבית מפסולות מגוונות כגון גזם עירוני וחקלאי, קש, פסולת נייר ובוצת נייר וכד', בעזרת טיפול קדם בגז אוזון. שימוש באוזון מציג שיטת טיפול קדם פשוטה וזולה להקמה והפעלה שכמעט ואינה מזהמת ואינה דורשת שימוש בחומרים מסוכנים וניתנת לביצוע בקנה מידה מקומי ועולמי. בימים אלו אנחנו מקימים באוניברסיטת תל-אביב פיילוט יישומי לייצור אלכוהול לחומר חיטוי מפסולת במדינת ישראל. אך ישנם אתגרים במחקר מכיוון שכחלק מתהליך הגמלון, והמעבר מסקאלה מעבדתית לפיילוט יישומי, האתגר יהיה להעלות את רמת יעילות תהליך יצירת אלכוהול מפסולות רבות". 

 

עוד אומרת פרופ' ממן כי "למחקר פוטנציאל רב מכיוון שבישראל מיוצרים מדי שנה כ-620,000 טונות של פסולות צמחיות ודומות שאין להן שימוש. במחקר זה, גם נטפל בבעיית הפסולות וגם נייצר מוצר בעל ערך רב שיאפשר עצמאות למדינת ישראל בייצור אתנול. יתרון נוסף של התהליך שלנו שמדובר על תהליך שיכול לעבוד עם כמויות פסולות שונות ומגוון של פסולות, וגם להשתלב עם הטיפול קדם החדשני שלנו יחד עם חברות שיש להם תהליכי התססה וזיקוק. פיתחנו גם שיטה חדשנית לייצור אתנול מפסולת מיחזור נייר וקרטון. התהליך שפותח מבוסס גם על טכנולוגית אוזונציה חדשנית אשר מאפשרת חמצון ופירוק של מרכיב הליגנין בפסולת, הידוע כמעכב את תהליך המרת הפסולת לאתנול. על בסיס תהליך זה נרשם לאחרונה פטנט בארה"ב. בישראל בלבד בכל שנה נוצרים כ-35,000 טונות של פסולות תהליך מיחזור נייר, אשר בלא פתרון אחר משונעות להטמנה". 

 

בנימה אישית

"המגפה האחרונה לקחה מאיתנו את הדבר היקר לנו מכל- קרבה אנושית. המאבק במגפה מאלץ אותנו להיות בריחוק כדי לשמור את היקרים לנו. אין ראוי מלהצטרף למאבק בקורונה ולתרום לבריאות הציבור. לא רק זה, בעת שהותי בשבתון בהודו נחשפתי להשפעה הסביבתית של שריפת פסולות חקלאיות במעבר בין הגידולים שונים וההשפעה על זיהום האוויר ועל ההחמרה במצב עקב שינויים האקלימיים שהשפיעו משך ועוצמת המונסונים. זה חיזק אצלי את החשיבות של המחקר שלנו על ניצול הפסולות החקלאיות ליצירת תהליך מבוזר, שיוכל לאפשר לחקלאים למשל להרוויח מאי-שריפת הפסולות החקלאיות, הרווח הסביבתי והחברתי וגם נכון להיות עוד יותר, שמירה על בריאות הצבור בשל מגפות עולמיות"  מסכמת פרופ' ממן.  

 

לכתבה ב YNET

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

בדיקות מעבדה בעזרת רשת נוירונים ללימוד עמוק בפחות זמן וכסף

מחקר

19.04.2020
צביעה וירטואלית של תאים ביולוגיים בעזרת רשת נוירונים עתידה לייעל בדיקות מעבדה

פרופ' נתן שקד מהמחלקה להנדסה ביו-רפואית, פיתח יחד עם המסטרנט יואב נייגט ושאר צוות החוקרים שלו רשת נוירונים ממוחשבת ללימוד עמוק אשר יודעת לבצע צביעה וירטואלית של תאים ביולוגיים, בלי צורך בצביעה כימית אמיתית שלהם.

  • מחקר
  • הנדסה ביו-רפואית

החודש התפרסם מאמרו של פרופ' שקד במגזין היוקרתי PNAS, הנחשב לאחד העיתונים המדעיים הטובים והוותיקים בעולם. במאמר הצליחו פרופ' שקד וקבוצתו להציג גישה חדשה של למידה עמוקה הנקראת HoloStain, אשר ממירה תמונות של תאים ביולוגיים מבודדים, שנרכשו ללא צביעה כימית על ידי מיקרוסקופיה הולוגרפית, לתמונותיהם הצבועות דיגיטלית, עם יכולת לראות אברונים (חלקים מהתא בעלי תפקידים ספציפיים) בתוך התאים, כאילו שמדובר בתאים צבועים באמת.

 

תאים ביולוגיים בצלוחית המצולמים במיקרוסקופ אור הם ברובם שקופים ולא ניתן לראות את התוכן שלהם. צביעת תאים היא טכניקה המקלה ומשפרת את הצפייה בתאים אלו ונמצאת בשימוש רחב בביולוגיה וברפואה, למשל כדי לאבחן מחלות או לבצע בדיקות מעבדה סטנדרטיות. פעולתה העיקרית היא שיפור ניגודיות הצבעים המאפשרת לראות את המבנה הפנימי של התאים למרות שקיפותם. הצביעה נעשית באמצעות קשירה כימית בין מולקולת הצבען (חומר הצביעה) לבין המולקולה הספציפית לה בתא, וכך אפשר לראות את האברונים הפנימיים בתוך התא ולאבחן את מבנהו.

 

הולוגרפיה קלינית

פרופ' שקד וקבוצתו פיתחו דרך לדימות טופוגרפי כמותי של תאים ללא צביעה המבוססת על הולוגרפיה קלינית, אשר מקליטה עד כמה האור התעכב במעבר דרך התאים, מה שמניב מפות גובה כמותיות של התאים. את זה ניתן לעשות מהר מאוד, אפילו תוך כדי זרימה של התאים. המערכות הללו היו עד לא מזמן מסובכות ויקרות מידי לשימוש קליני, אך הדבר נפתר בעזרת המצאותיה האחרונות של הקבוצה - מודולים הולוגרפים קטנים שמתממשקים ליציאה של מיקרוסקופי אור קליניים רגילים ויכולים להניב הולוגרפיה איכותית בתנאים קליניים.

 

מבעיה לפתרון

למרות שהתמונות של ההולוגרפיה הן כמותיות ולא דורשות צביעה כימית, קלינאים מתקשים להשתמש בהן, כי הן לא נראות כמו תמונות של תאים צבועים, ששם רואים בבירור את האברונים הפנימיים של התא. לצורך פתרון בעיה זו, קבוצת המחקר בנתה רשת נוירונים ממוחשבת ללימוד עמוק אשר יודעת, לאחר אימון מתאים, לקחת את תמונות ההולוגרפיה ולהציג אותן כאילו הן צבועות, בזמן אמת (במהירות רבה).

 

שיטות לבניית רשתות לימוד עמוק התפתחו רק לאחרונה עקב הצורך בכוח חישוב רב בזמן האימון שלהן.  

 

היתרונות לצביעה וירטואלית של תאים ביולוגיים

צביעה וירטואלית של תאים ביולוגיים חשובה לבדיקות מעבדה שגרתיות רבות שבהן צובעים תאים כדי לאפיין ולמיין אותם (למשל בדיקת דם). כעת, כבר לא חייבים לצבוע את התאים בצורה כימית לצורך אבחנה מבנית שלהם, וזה עתיד לחסוך כסף וזמן. בנוסף, יש משימות רפואיות שבהן צביעה כימית לא אפשרית בגלל שהיא הורסת את התא (למשל בחירת זרעונים להפריה חוץ גופית), או בגלל שהצבענים המתאימים לא קיימים לסוג התאים הנבחן. מעבר לכך, התמונות שמייצרת הרשת הלומדת נקיות יותר, וגם ניתן לקחת תאים שנרכשו שלא בפוקוס ולהכניס אותם לפוקוס בצורה אוטומטית במחשב, מכיוון שהרכישה היא הולוגרפית (כלומר של כל חזית הגל של האור). זה מגדיל את האפשרות לעבד יותר תאים בזמן נתון (כי אם עוברים שני תאים - אחד בפוקוס והשני לא בפוקוס במכשיר שמזרים תאים - ניתן לרכוש את שניהם מבלי לאבד זמן).

שורה ראשונה - מפות טופוגרפיות כמותיות של תאי זרע שהושגו על ידי הולוגרפיה ללא צביעה. 

שורה שניה - תמונות של תאי זרע צבועים וירטואלית (ללא צביעה אמיתית) - זוהי תוצאת רשת הנוירונים לאחר עיבוד המפות הטופוגרפיות שמוצגות בשורה הראשונה.

שורה שלישית - אותם תאים שצבועים באמת, על ידי צביעה כימית, להשוואה.

שלוש העמודות השמאליות מציגות תאים בעלי מורפולוגיה תקינה. שלוש העמודות הימניות מציגות תאים בעלי מורפולוגיה שאינה תקינה. כעת, אפשר לבצע צביעה וירטואלית של תאי הזרע במהלך הפריה חוץ גופית ולאבחן את התאים כאילו הם נצבעו כימית אמיתית.

 

* מחקר זה זכה לאחרונה בגרנט של האיחוד האירופי Horizon2020 ERC Proof of Concept

*לינק לקבוצת המחקר של פרופ' נתן שקד

*לינק למאמר במגזין PNAS

אומנות הציות בזמני חירום

מחקר

31.03.2020
אומנות הציות בזמני חירום

ד"ר רעות נוחם הראתה במחקרה לאחרונה כי במצבי חירום כגון אסון טבע, מגיפה או מלחמה, שיתוף פעולה מצד האוכלוסיה הוא המפתח ליישום מוצלח של כל תכנית פעולה

  • מחקר
  • הנדסת תעשייה

מאז החל משבר הקורונה, מפרסמות הרשויות הנחיות והגבלות לאזרחים, אשר מטרתן לסייע בהאטת קצב התפשטות הנגיף. עם זאת, לא תמיד ממלאים האזרחים אחר ההנחיות ופועלים על סמך הבנתם ושיקול דעתם. כעס רב מופנה כלפי אותם אזרחים או קבוצות שלא משתפות פעולה עם ההנחיות, ובמקביל רשויות החוק נערכות לאכוף את ההנחיות ביד נוקשה.

 

מי בעצם אשם באי ציות האזרחים?

ברור לכולם שבהיעדר שיתוף פעולה רחב של הציבור, לא ניתן יהיה להשיג את התוצאה הרצויה מאותם צעדים קשים וקיצוניים. אך האם נכון להטיל את מלוא האחריות על כשלון זה או אחר של יישום מדיניות הסגר והריחוק החברתי על הציבור? בכדי לענות על השאלה צריך להבין ולקחת בחשבון את ההתנהגות האנושית בעתות חירום. שלא כמו בזמן שגרה, מצבים של לחץ, חרדה וחוסר וודאות יגרמו לאנשים לפעול דוקא בניגוד להנחיות, אם מבחירה, במידה וירגישו שזה הדבר הנכון ביותר עבורם או אם מחוסר ברירה. בכל חברה יהיו אנשים שמשתפים פעולה עם המדיניות ונשמעים להנחיות, אך גם כאלה שלא.

הפער בין התכנון והתחזיות לבין מה שקורה בפועל אכן נובע מחוסר שיתוף פעולה מלא של האוכלוסיה, אך התעלמות מאותם היבטים התנהגותיים וחברתיים בשלב קבלת ההחלטות והטלת האחריות במלואה על הציבור אינה הפתרון. במצבי חירום תפקידם של מקבלי ההחלטות הוא לא רק להיות צודקים אלא לנהוג בחכמה.

אז מה צריך לעשות? איך אפשר לשפר את תהליך קבלת ההחלטות?

ד"ר רעות נוחם, פוסט-דוקטורנטית באוניברסיטת Northwestern (במסגרת המלגה המשותפת לאוניברסיטת תל אביב ו- Northwestern), עשתה את הדוקטורט שלה במחלקה להנדסת תעשייה תחת הנחייתה של פרופ' מיכל צור, ראשת המחלקה להנדסת תעשייה. הדוקטורט שלה עסק בלוגיסטיקה וקבלת החלטות בשעת חירום והוא רלוונטי יותר מתמיד כעת במשבר הקורונה. "הראנו כי במצבי חירום כגון אסון טבע, מגיפה או מלחמה, כאשר שיתוף פעולה מצד האוכלוסיה הוא המפתח ליישום מוצלח של כל תכנית פעולה, שילוב ההיבטים ההתנהגותיים במודלי קבלת ההחלטות הוא קריטי והתעלמות מההיבט האנושי עלולה להוביל לפתרון גרוע בהרבה מהפתרון שיתקבל תחת הערכת מצב מציאותית וכנה. במילים אחרות, במקום לקוות שכל האוכלוסיה תישמע להנחיות, יש לשלב במודלים תרחישים בהם חלק מהאוכלוסיה לא משתפת פעולה ולעדכן את ההערכות של המודלים ואת ההחלטות שמשתמעות מכך בהתאם. עוד הראנו, כי ע"י זיהוי ממוקד של אוכלוסיות מפתח בהן ניתן למצוא קבוצות גדולות של "מפרי הנחיות" וע"י הקצאת תמריצים (כן, תמריצים ולאו דוקא אכיפה) לאותן אוכלוסיות ניתן לגשר על חלק גדול מהפער שקיים בין המצוי לרצוי" מסבירה ד"ר נוחם.

 

הערכות לאסון

המחקר התמקד בהערכות לאסון טבע כגון רעידת אדמה, ובהחלטות כגון מיקום מרכזי סיוע לאוכלוסיה והקצאת "ערכות הישרדות" לנפגעי האסון. המודלים המוצעים נבחנו באמצעות תרחישים שהתקבלו מועדת ההיגוי הארצי להערכות לרעידות אדמה והמכון הגיאופיזי לישראל. עם זאת, העקרונות המוצגים במחקר רלוונטים ביותר גם לתרחיש של מגיפה כמו מגיפת הקורונה. בעת קבלת החלטות אודות הגבלות תנועה, צמצום שוק העבודה וריחוק חברתי, יש לקחת בחשבון את מידת שיתוף הפעולה של האוכלוסיה עם הרשויות. חשוב לזהות אוכלוסיות "בעייתיות" אשר יתקשו לציית להנחיות כלשהן כבר בעת שגרה וכחלק מתכניות ההערכות לחירום, ולגבש אסטרטגיות פעולה מבעוד מועד. למשל בעדה החרדית כדאי היה לפנות לרבנים המנהיגים עוד בטרם התפרסמו ההנחיות, וביחד איתם למקד את מאמצי ההסברה והפרסום באופן שיהיה אפקטיבי עבור פלח אוכלוסיה זה. דוגמה נוספת היא סיוע בהכשרה והטמעה של פתרונות טכנולוגיים ללימוד תורה וקיום תפילות, ומתן פתרונות לאנשים שצריכים להיות בבידוד ולא יכולים לקיים את ההנחיה לאור תנאי המגורים הנוכחיים שלהם. עבור האוכלוסיה המבוגרת, הקמת מערך מסודר של נציגים שידאגו לספק את כל צרכיהם בזמן הסגר ועבור צעירים הנמצאים בסיכון נמוך ומתקשים לעצור את שגרת חייהם, אפשר להציע סיבסוד שירותים בהם יוכלו להשתמש בזמן או בתום המשבר כל עוד יוכיחו כי נשמעו להנחיות. כל הפתרונות הללו דורשים השקעה כספית וחשיבה מחוץ לקופסה אך סביר להניח כי התועלת מהשקעה זו תשתלם.

 

"ובנימה אישית – תישמעו להנחיות. ככל שאוכלוסית הצייתנים תהיה גדולה (כפי שראינו במדינות כמו קוריאה הדרומית וסינגפור), כך פחות משאבים יושקעו באותם אלו שלא נשמעים להנחיות והחברה כולה תרוויח מכך. זו אומנות הציות" מסכמת ד"ר רעות נוחם.

 

קישור למאמר

CT

מחקר

22.03.2020
אבחון נגיף הקורונה באמצעות בדיקת CT

פרופ' חיית גרינשפן מהמחלקה להנדסה ביו-רפואית באוניברסיטת תל אביב שותפה לפיתוח מערכת בינה מלאכותית המאבחנת קורונה

COVID - 19 באמצעות בדיקת CT

  • מחקר
  • הנדסה ביו-רפואית

במעבדה לעיבוד תמונות רפואיות הממוקמת בפקולטה להנדסה אוניברסיטת תל אביב, תחת ניהולה של פרופ' חיית גרינשפן מפתחים פתרונות הנדסיים לסיוע בפענוח תמונות רפואיות אשר יעזרו לרופאים להשיג קריאת מקרים מהירה יותר ומדויקת יותר. מהמעבדה יצאו פיתוחים פורצי הדרך בנושא של אבחונים אוטומטים בתמונות MRI ואנליזת גידולים בכבד בבדיקות CT.

 

בעקבות משבר נגיף הקורונה, עובדת פרופ' גרינשפן על איבחון תוצאות רדיולוגיה של חולי הנגיף. המחקר נעשה בשיתוף עם מספר מרכזים בינלאומיים ובהתבסס על פלטפורמת AI של חברת RADLogics המסייעת לרדיולוגים בפיענוח תמונות של דימות רפואי כמו CT וצילומי רנטגן. פרופ' גרינשפן ושותפיה פיתחו שיטה לאיבחון השפעות נגיף הקורונה על פי בדיקת CT של הריאות במטרה להבדיל בין חולי וירוס קורונה לבין שאינם חולים. בנוסף פיתחה הקבוצה שיטת אפיון כמותי של חומרת המחלה אשר יכולה לשמש כמדד לניטור יעיל, מדויק ומהיר של מצב החולה. כלים אלה יכולים לסייע בזיהוי מגמות של החמרה ושיפור כבר בראשיתן.

 

בעזרת אמצעים אלה יוכלו רופאים לאתר במהירות חולים שמצבם מחמיר לעומת חולים בדרך להחלמה. איבחון מוקדם שכזה יאפשר לפנות מיטות חיוניות בבתי החולים בכלל ובטיפול נמרץ בפרט. חשוב לציין כי רבים מתלמידי ובוגרי המחלקה להנדסה ביו-רפואית בפקולטה להנדסה עובדים בחברה RADLogics ושותפים לפיתוח פורץ דרך זה.

בתמונות סריקות CT של ריאות בהקשר לתחלואה בנגיף ה Covid-19: מצד שמאל: ריאות של חולה בנגיף הקורונה / אמצע: ריאות של חולה בהחלמה / ימין: אדם בריא

*מקור התמונה: https://arxiv.org/abs/2003.05037

 

עד כה כלל המחקר מערך בדיקות על 157 חולים מסין וארה"ב והמסקנה הראשונית היא שניתוח AI של התמונה יכול להשיג דיוק גבוה בזיהוי פגיעה של נגיף ה Covid-19 כמו גם לאפשר כימות ומעקב אחר נטל המחלה.

 

כיום הקבוצה ממשיכה בפיתוח כלי שיאפשר לרשויות לבצע סקרי קורונה באוכלוסיות רחבות באמצעות CT ברמת קרינה נמוכה, בדומה לבדיקות הסקר הנערכות היום לאיתור חולי סרטן. סקר כזה יכול להאיץ את הבדיקות ולהגדיל משמעותית את מספרן, על מנת לאתר חולים במהירות, לבודד אותם ולהעניק להם מיד את הטיפול הנדרש ובמקביל לאפשר לשאר האוכלוסייה להמשיך בשגרת חייה.

 ״זרימה לאחור״ של אור הנע קדימה

מחקר

12.03.2020
״זרימה לאחור״ של אור הנע קדימה

ד"ר אלון באב"ד, יחד עם תלמידי המחקר שלו הצליחו להדגים לראשונה את התופעה "זרימה לאחור" המבוססת על רעיון שעלה לפני כחמישים שנה במסגרת המכניקה הקוונטית אך לא הודגם מעולם בשום ניסוי

  • מחקר
  • הנדסת חשמל

דמיינו כדור הנזרק קדימה בחלל חופשי. בכל רגע ורגע לאחר הזריקה, אם נמדוד את כיוון התנועה של הכדור הוא ימשיך לנוע קדימה. התוצאה הברורה הזו, כלל וכלל איננה מחויבת המציאות כאשר מדובר בתנועה של חלקיקים מיקרוסקופיים אשר תנועתם מצייתת לחוקים המוזרים של המכניקה הקוונטית. לפי תורה זו חלקיק יכול להתנהג גם כגל.

 

מאחר שגלים שונים יכולים להתחבר ביחד בתהליך הנקרא התאבכות, גם חלקיק הנע קדימה יכול להיות מורכב מאוסף של גלים אשר נעים כולם קדימה. ההשלכות של התאבכות זו יכולות להיות  מוזרות ולא אינטואיטיביות. עם בחירה נכונה של משרעות הגלים (עד כמה חזק הם מתנדנדים) והשהיה יחסית ביניהם ניתן ליצור חלקיק אשר למרות שהוא מורכב מגלים שכולם נעים קדימה, אם התנועה שלו תמדד במקומות מסוימים במרחב ובזמנים מסוימים – יתגלה שהחלקיק נע אחורה. בשאר המקומות והזמנים – אם תנועת החלקיק תימדד הוא ימצא כנע קדימה. למעשה הסיכוי למצוא את החלקיק נע קדימה הוא עדיין גדול בהרבה מהסיכוי למצוא אותו נע אחורה. כמו כן ההתאבכות המייצרת את אותה ״זרימה לאחור״ היא מאוד עדינה – שינוי קטן במשרעת של הגלים או בהשהיה היחסית שלהם תהרוס בקלות את תופעת ״הזרימה לאחור״. מאחר שהתופעה הזו כה רגישה, עד היום לא הצליחו להבחין בה בשום מעבדה בעולם.

 

במעבדתו של ד״ר אלון באב״ד מבית הספר להנדסת חשמל באוניברסיטת תל אביב הצליחו כעת להדגים את התופעה עם אור. הרעיון הבסיסי במרכז המחקר הוא שגם אור הוא תופעה גלית, וכמו החלקיק קוונטי, יכול להיות מורכב מאוסף של גלים הנעים לכיוון מסוים.

בניסוי במעבדה של ד"ר באב"ד The Physical Optics group השתמשו החוקרים ותלמידי המחקר יניב אליעזר, שנמצא כיום בפוסט דוקטורט באוניברסיטת ייל, ותומאס זכריאס, באלומת לייזר אשר פוצלה והורכבה מחדש כאוסף של גלים הנעים כולם בזוית חיובית יחסית לציר שנקבע מראש. אסופת הגלים הזו חושבה מראש כך שתוכל לייצר את תופעת ה״זרימה לאחור״. כעת בהזזת חריץ קטן לרוחב אלומת האור נעשית המדידה המקומית של כיוון זרימת האור. ברוב המיקומים בהם הושם החריץ, האור אשר יצא ממנו המשיך לנוע בכיוון המאופיין עם זוית חיובית, אך במספר מקומות מוגדרים – האור אשר בקע מהחריץ נע בכיוון המאופיין עם זוית שלילית, מאשש בכך את התופעה המדוברת. למחקר זה יכולות להיות השלכות בתחומים הדורשים שליטה מדויקת בפילוג המרחבי של עוצמת אור בנפחים קטנים, כמו מיקרוסקופיה, חישה והנעה של חלקיקים זעירים. 

 

*עוד ניתן לקרוא על המחקר של ד"ר באב"ד במגזין היוקרתי Optica שהתפרסם חודש שעבר - למאמר המלא במגזין Optica

 

*לכתבה המלאה בעיתון הארץ

 

 

   

 

 

 

יאיר שוקף

מחקר

10.02.2020
טעויות בזכויות יוצרים

חוקרים מבית הספר להנדסה מכנית באוניברסיטת תל אביב, בשיתוף עם עמיתיהם בהולנד פרסמו מחקר פורץ דרך בכתב העת Nature Physics בו הדגימו כיצד ניתן לשתול פגם טופולוגי במטא-חומר ולתכנן את התנהגותו מחדש

  • מחקר
  • הנדסה מכנית

מטא-חומרים הם חומרים חכמים שהונדסו בידי אדם, ואינם מצויים בטבע. תכונותיהם של חומרים טבעיים נקבעות על ידי הרכבם הכימי (אטומים ומולקולות), ואילו התכונות הפיזיקליות של מטא-חומרים נובעות מהמבנה המרחבי שלהם. במילים אחרות: אבני הבניין המיוחדות, והאופן בו הן משתלבות זו בזו, קובעים את תכונות המטא-חומר.

 

מה ההבדל בין נייר שטוח לנייר מקומט?

גליון נייר שטוח ונייר מקומט עשויים מאותו החומר. אולם הגליון שטוח וגמיש, והדף המקומט קשיח וכדורי: הקימוט משנה את ההתנהגות של הנייר. "הנייר המקומט הוא מה שאנו מכנים מטא-חומר מכני: אם נשנה את הצורה שלו, הוא ישנה את התכונות שלו", אומר פרופ' יאיר שוקף, אחד השותפים למחקר והעומד בראש קבוצת המחקר בבית הספר להנדסה מכנית באוניברסיטת תל אביב.

 

טעות מכוונת מראש

תובנות חדשות מגיעות משיתוף פעולה בין אוניבריסטת תל אביב, אוניברסיטת ליידן ומכון AMOLF באמסטרדם. גב' אן מואסן, ד"ר ארדל אוגוז, פרופ' יאיר שוקף ופרופ' מרטין ון-הקה תכננו במכוון טעות במטא-חומר, פגם טופולוגי, וחקרו את ההשפעה שלו. "קיבלנו השראה ממסכי LCD. הם מייצרים צבעים שונים באמצעות מערכים של גבישים נוזליים קטנטנים. כשיוצרים פגמים במערכים האלה - כמו למשל כשלוחצים עם אצבע על המסך – מפרים את הסדר ומקבלים קשת של צבעים. פגמים משנים את הפעולה של המסך שלך."

 

השתלת פגמים באופן נשלט לתוך מטא-חומר אינה משימה קלה. צוות המחקר המציא חומר תיאורטי: מבנה שטוח, עשוי מאבני בניין משולשות, שהצדדים שלהן זזים בבליטות כלפי חוץ או שקעים כלפי פנים. בחומר מושלם, כל אבני הבניין משתלבות כמו בפאזל: כל בליטה ממוקמת מול שקע. אבל מה קורה אם מסובבים שורה של אבני בניין בפאזל, והחתיכות לא יכולות להשתלב יחד? "זה מה שאנו מכנים פגם גולבלי, או טופולוגי", מסביר פרופ' שוקף. "זוהי חוסר אחידות שלא ניתנת להסרה על ידי סיבוב של אבן בניין אחת בלבד".

 

תופעות מרחביות

הצוות השתמש בהדפסה תלת-ממדית על מנת לייצר את המטא-חומר הזה, שעשוי אבני פאזל מחוברות. המבנים שהודפסו איפשרו להראות איך פגם טופולוגי מייצר התנהגויות מפתיעות. החומר המושלם רך כשלוחצים עליו משני צדדים, אבל החומר הפגום שונה: צד אחד שלו מרגיש רך והשני קשיח. התופעה הזו מחליפה צדדים כשלוחצים בצד אחד ומושכים בצד השני: חלקים קשיחים הופכים רכים, וחלקים רכים הופכים קשיחים.

 

פרופ' שוקף אומר: "התנהגות לא סימטרית זו כתוצאה מפגם טופולוגי לא נראתה קודם. מצאנו דרך לייצר פגמים כאלה באופן מבוקר. בגלל שפיתחנו חוקי תיכנון כלליים, כל אחד יכול להשתמש ברעיונות שלנו. זו דרך חדשה להתבונן על מטא-חומרים מכניים: אנחנו משתמשים בעקרונות מפיזיקה של חומר מעובה וממתמטיקה על מנת לחקור מכניקה של חומרים. זה נפלא לראות איך חוקרים מתחומים שונים מקבלים השראה מהתוצאות שלנו".

 

מטא-חומרים מורכבים הנבדלים רק בכיוון של שתי אבני בניין (ירוק) מגיבים באופן מאוד שונה ללחיצה מכנית (צהוב). חצים מסמנים הזזות וצבעים מייצגים כוחות מכנים.

מטא-חומרים מורכבים הנבדלים רק בכיוון של שתי אבני בניין (ירוק) מגיבים באופן מאוד שונה ללחיצה מכנית (צהוב). חצים מסמנים הזזות וצבעים מייצגים כוחות מכנים.

 

מן העיתונות

למאמר המלא ב Nature Physics

למאמר המשך

לסרטון הסבר

לכתבה המלאה בידען

לכתבה המלאה ב New-Tech

ד"ר ירון טולדו פיתח מערכת למדידת גלים וזרמים בים התיכון לזיהוי סכנות

מחקר

08.09.2019
מדידת זרמים וגלים הראשונה מסוגה באזור הים התיכון

ד"ר ירון טולדו פיתח מערכת למדידת גלים וזרמים לזיהוי סכנות

  • מחקר
  • מדע והנדסה של חומרים
  • הנדסה מכנית

הים נמצא בתנועה מתמדת, שלא כמו השטח היבשתי, ומשנה את תכונותיו בזמנים קצרים יותר באופן משמעותי. התנהגות זו מובילה לצורך במאמץ מתמשך של ניטור בקנה מידה גדול במיוחד לאור תגליות הגז המשמעותיות לחופי מדינת ישראל והתוכניות הנרחבות לפיתוח התשתיות הימיות שהביאו את האזור הימי הכלכלי הבלעדי של ישראל למרכז תשומת לב.

 

ניטור סכנות מהים

מערכת רדאר בתדר גבוה הינה המיכשור היחיד היכול לנטר על פני שטח גדול ובאופן רציף את זרמי השטח והגלים. מערכת כזו מהווה תשתית לאומית ואזורית הן בפן המחקרי של הבנת משטר הזרמים האגני ומשטר הגלים בים העמוק אל מול חופי ישראל, והן בפן האופרטיבי למשל הנצלה של מלחים, התראות צונאמי, זיהוי תנודות של חולות בחופים או התמודדות עם שפכי נפט כתוצאה מהיבקעות מיכלית, המערכת תדע לקבוע מראש לאן הנפט יזרום, לאשדוד או לנהריה.

 

הקמתן של מערכות ניטור

ד"ר ירון טולדו, ראש המעבדה להנדסה ימית ופיזיקה מבית הספר להנדסה מכנית אוניברסיטת תל אביב הקים מערכות ניטור בחופי ישראל - אשקלון ואשדוד. במעבדה הוא וצוותו מנסים לשלב נגזרות תיאורטיות בסיסיות, מודלים מספריים ותצפיות שדה כדי להשיג הבנה מעמיקה של יסודות הפיזיקה של גלי שטח והופעתם בים התיכון. "הקמתן הינה משימה עצומה, הדורשת מציאת מיקומים מתאימים, רצועות חוף זמינות אף באורך של עד כ - 300 מ', הקמת תשתית, מציאת תדרים מתאימים וקבלת אישורים" מסביר ד"ר טולדו. "מטרות המחקר היו להגיע להקמת תשתית לאומית זו, לבצע בחינה ראשונית של הדאטה המתקבל ממנה ולבחון את היכולת לשלב אותה במודלי חיזוי הזרמים. לאחר התגברות על קשיים בירוקרטיים וטכניים רבים, הפרויקט בוצע בהצלחה ואפשר מדידות ראשונות מסוגן באזורינו. העבודה על קידום תשתית חשובה זו עדיין נמשכת"

 

ימין: מפת זרמים רדיאליים המתקבלים מתחנת אשקלון, מרכז: מפת זרמים רדיאליים המתקבלים מתחנת אשדוד. שמאל: מפת זרמים באזור החיתוך בין התחנות ללא מגבלת דיוק גאומטרית. שטח הכיסוי יורחב לרוב המים הכלכליים של הים התיכון עם הפעלת שתי תחנות צפוניות לטווח קצר (חיפה ועכו), שהוקמו לאחרונה וכן תחנה לטווח ארוך שממתינה לאישור תקציבי (עתלית).

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 

המהנדס שקורא בלב

מחקר

13.08.2019
המהנדס שקורא בלב

ד"ר גיל מרום פיתח סימולציות ממוחשבות המאפשרות להבין טוב יותר את הביומכניקה של הטיפול בחולי לב ולהעריך את הסיכויים לסיבוכים.

  • מחקר
  • הנדסה מכנית

מחלות לב וכלי דם הן גורם המוות המוביל בעולם המפותח המהוות כמעט 30% מכלל מקרי המוות מדי שנה. בלב קיימים ארבעה מסתמים האחראים לזרימה חד-כיוונית של הדם בתוך חללי הלב ומהם לכל איברי הגוף. כל אחד מהמסתמים אחראי על הכוונת הדם בין מדורי הלב השונים בכיוון אחד, בעת כיווץ העליות והחדרים, כדי שיגיע אל העורקים הגדולים ומשם לריאות ולשאר הגוף. לעיתים המחלות במסתמים נגרמות בשל שינויים במבנה הרקמות שלהם ובמרכיביהם, שמובילים להפרעה במעבר הדם ללב ולשאר איברי הגוף. ד"ר גיל מרום, מבית הספר להנדסה מכנית של הפקולטה להנדסה אוניברסיטת תל אביב עושה שימוש במודלים חישוביים שפיתח כדי לחזות את הפיזיקה של מערכת הלב וכלי הדם (המערכת הקרדיווסקולרית) וכך לשפר את הטיפול בחולה לב.

 

יתרונות המודלים החישוביים במתן הטיפול הנכון לחולה

מורכבות מערכת הלב, המשלבת סיבוכיות פיזיקלית בסדרי גודל שונים, היא סיבה מרכזית לצורך בשימוש במודלים חישוביים הנקראים גם סימולציות. פעולת שאיבת הדם בלב נגרמת על ידי התכווצות שריר הלב, כיוון זרימת הדם נקבע על ידי מסתמי הלב, בעוד התכווצות השריר נשלטת על ידי מערכת ההולכה החשמלית של הלב. מורכבות זו יחד עם המגבלות של ניסויים קליניים וניסויי מעבדה מסבירות בבירור את יתרונות המודלים החישוביים. סימולציות ממוחשבות מאפשרות לערוך ניסויים וירטואליים ולבחון אפשרויות שונות לטיפול באותו חולה. היכולת להשוות מקרים זהים, בניגוד להשוואת מקרים ממספר חולים שונים, מאפשרת ללמוד את ההשפעה של פרמטר מסוים על התפקוד, תוך בידוד השפעה זו מגורמים אחרים, וכך למצוא מגמות המאפיינות את התופעה. נוסף להשלכות הרפואיות החשובות של מחקר זה, המחקר מרתק גם מבחינה הנדסית. בניגוד למקרים הנדסיים "רגילים" בהם מאפייני הבעיה ידועים, כמו גאומטרית הגוף ותכונות החומר ממנו הוא מורכב, במקרים הביולוגים יש שונות גדולה במחלות ובאוכלוסייה ולמעשה המודלים מתבססים פעמים רבות על תהליך הנדסה הפוכה והנחות הנדסיות שונות.

 

המכניקה של מחלות מסתמי לב והטיפול בהן

מסתמי הלב הם שסתומים הבנויים מעלים גמישים. כאשר פעילותם תקינה הם מאפשרים זרימה חד כיוונית ומונעים זרימה חוזרת. בניגוד לשסתומים מכניים בשימושים הנדסיים, העלים הגמישים צריכים לעבור עיוותים גדולים בכל מחזור לב, לעמוד בלחצים גבוהים ביחס לחוזקם המכני, ולעבוד במשך הרבה מאוד מחזורי לב (כמחזור לשנייה במשך כל שנות החיים). מחלות מסתמי הלב הנפוצות ביותר הן היצרות של המסתם האאורטלי (אבי העורקים) ודליפה של המסתם המיטרלי. טיפולים אפשריים הם תיקונים או החלפת המסתם בניתוחי לב פתוח ובשנים האחרונות נוספה גם אפשרות זעיר פולשנית של השתלת מסתם בצנתור. אך לכל סוגי הטיפולים הללו ישנם סיבוכים אפשריים שכמובן עדיף להימנע מהם.

 

המודלים החישוביים שאנחנו מפתחים מאפשרים להבין טוב יותר את הביומכניקה של הטיפול ולהעריך את הסיכויים לסיבוכים שונים. לדוגמה, תוצאות המודלים הקודמים שלנו עוזרות למנתחים לבחור את הקוטר הרצוי שאליו יש להקטין את קוטר המסתם החולה על מנת להביא אותו לתפקוד תקין. גם במסתמים המושתלים בצנתור לטיפול בהיצרות המסתם אבי העורקים אנחנו יכולים, על פי תוצאות הסימולציות, להמליץ על גודל המסתם המתאים, מיקום ההשתלה האופטימלי, ודרכי ההשתלה כדי להפחית את הסיכוי לדליפות, תזוזה של המסתם המושתל בגלל התכווצות הלב, ופגיעה בהולכת החשמל בלב בגלל לחצי מגע שהשתל מפעיל על הלב. אותן מסקנות יכולות לעזור גם בתכנון מסתמים תותבים חדשים עם תפקוד טוב יותר וסיכוי מופחת להתפתחות הסיבוכים לאחר ההשתלה.

 

במחקרים שנערכים עכשיו בקבוצה של ד"ר מרום, מנסים להבין את מנגנוני קרישת הדם על עלי המסתמים המושתלים. המודלים בהם אנו נעזרים בנושא זה, מבוססים על הידע שקרישת הדם נגרמת בגלל מאפיינים מכניים של זרימת הדם, כגון חשיפת טסיות הדם למאמצי גזירה, משך זמן החשיפה, או משך הזמן שהטסית נעצרת במקום בגלל מערבולות. כמו כן, מאפייני הזרימה קובעים גם את סוג קרישי הדם שעלולים להיווצר, תסחיפים או דווקא קרישה על עלי המסתם אשר גורמים להם להתעבות ולהפסיק לתפקד. שיטות דומות עוזרות לנו להבין טוב יותר את אי-ספיקת, או דליפת, המסתם המיטרלי עם מטרה שידע זה יעזור לתת מענה למרבית החולים שכיום אינם מקבלים טיפול בגלל סיכון ניתוחי גבוה. "אחת הסיבות העיקריות שעדיין לא הצליחו לפתח פתרון התערבותי לחולים אלו היא שלמסתם זה יש אנטומיה ופעולה מכנית מסובכים הרבה יותר מאשר במסתם אבי העורקים. הבנה טובה יותר של תפקודו תעזור לשפר טיפולים קיימים ולפתח שתלים חדשים שיצליחו לעמוד בעומסים המכניים הפועלים במסתם זה ולשפר את איכות חיי החולים" מסביר ד"ר מרום.

 

דוגמא למודלים של פעילות הלב במצב מכווץ ורפוי (צד ימין) ושל זרימת הדם דרך מסתם תותב (צד שמאל)

 

לאתר קבוצת המחקר

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 

 
כיצד ניתן לזהות חוסר שיווי משקל של מערכות שונות?

מחקר

13.08.2019
כיצד ניתן לזהות חוסר שיווי משקל של מערכות מורכבות?

ד"ר גילי ביסקר יחד עם חוקרים מאוניברסיטת מישיגן ואוניברסיטת קומפלוטנסה פרסמו את מחקרם ב Nature Communications המסביר כיצד ניתן לכמת את שבירת הסימטריה להיפוך-בזמן ללא זרמים

  • מחקר
  • הנדסה ביו-רפואית

ד"ר גילי ביסקר מהמחלקה להנדסה ביו רפואית ומנהלת המעבדה לאופטיקה, ננו-טכנולוגיה, וביופיזיקההצטרפה לפקולטה להנדסה באוניברסיטת תל אביב אחרי 6 שנים באוניברסיטה היוקרתית ואחת הטובות בעולם - MIT שם עבדה במעבדה ניסיונית במחלקה להנדסה כימית ופתחה ננו-גלאים אופטיים המבוססים על ננו-צינוריות מפחמן וגילתה ננו-גלאים לחלבונים פיברינוגן ואינסולין. לאחר מכן עסקה במחקר תיאורטי במחלקה לפיזיקה ב- MIT שם עבדה על תהליכי הרכבה עצמית מחוץ לשיווי משקל, ובהסקת מסקנות לגבי מערכות מורכבות מחוץ לשיווי משקל מתוך מידע חלקי.

 

פיתוח שיטות לאבחון וטיפול חדשות

"המעבדה בפן הניסיוני, מתמקדת בפיתוח כלים ננו-טכנולוגיים שיאפשרו לעקוב אחרי תהליכים מולקולרים, בשאיפה להבין את הדינמיקה של אותם תהליכים. כלים אלו מבוססים על ננו-חלקיקים הפולטים פלורסנציה בתחום האינפרא אדום, ויכולים לגלות שינויים בסביבה הקרובה שלהם או ספיחה של מולקולות על פני השטח שלהם. בעזרת מעקב אחרי התכונות האופטיות של הננו-חלקיקים הללו במערכות ביולוגיות אפשר ללמוד עליהן ולקבל מידע חדש על תהליכים מיקרוסקופיים שאחראיים על ההתנהגות המקרוסקופית שלהן. כך מסבירה ד"ר ביסקר.

בין השאר, ניתן להשתמש באותם ננו-חלקיקים כסנסורים למולקולות ביולוגיות עבור אפליקציות ביורפואיות על מנת לפתח שיטות אבחון וטיפול חדשות. למשל, במעבדה מפתחת ד"ר ביסקר ננו-סנסורים לחלבונים וביו-סמנים של מחלות כגון סרטן וסכרת, לצורך גילוי מוקדם, ניטור התקדמות המחלה, ובדיקה של יעילות טיפול.

 

שבירה של סימטריית ההיפוך-בזמן

המעבדה אף מתמקדת בפן התיאורטי בו ד"ר ביסקר מפתחת כלים אנליטיים ונומריים לזיהוי של חוסר שיווי-משקל תרמודינאמי על מנת להבין תהליכים מולקולרים שאחראים לקיומם של חיים. למשל, תא חייב להשקיע אנרגיה על מנת להעביר מטען מקצה אחד של התא לקצהו השני, או על מנת לשנות את מבנה השלד שלו לטובת תנועה במרחב. אלו הן דוגמאות לתהליכים מחוץ לשיווי משקל החיוניים לתפקוד תקין של התא.

 

כל המערכות החיות נמצאות רחוק משיווי משקל, שמתבטא גם בשבירה של סימטריית ההיפוך-בזמן. כאשר יש במערכת תנועה בכיוון מועדף, או זרם הנראה לעין, קל לזהות שהמערכת אינה בשיווי משקל. לעומת זאת, בהעדר זרם זיהוי הכוחות הפנימיים או החיצוניים שדוחפים את המערכת מחוץ לשיווי-משקל נהיה מאתגר. במקרה זה, ד״ר ביסקר ומשתפי פעולה מאוניברסיטת קומפלוטנסה של מדריד ומאוניברסיטת מישיגן בארה״ב, הדגימו כיצד ניתן לכמת את שבירת הסימטריה להיפוך-בזמן ללא זרמים.

 

המחקר, שהתפרסם לאחרונה בעיתון  Nature Communications, מראה אין ניתן להשתמש בשיערוך המבוסס על פילוג ההסתברות של זמני המתנה כדי לזהות חוסר שיווי משקל. בעזרת השוואת ההתפלגויות של תזמון התהליכים הנצפים במערכת לבין ההתפלגויות של תזמון התהליכים ההפוכים בזמן, ניתן לכמת את אותה שבירת סימטריה ובכך לתת חסם תחתון לכמה רחוקה המערכת משיווי משקל. מדד זה יכול לעזור להבנה בסיסית של מערכות חיות, וללמד אותנו על יעילות של תהליכים מולקולרים, או על המחיר התרמודינמי ההכרחי לדיוק שלהם. ההבנה הזו יכולה גם לעזור לפיתוח מערכות סינטטיות השואבות השראה ממערכות ביולוגיות.

חלקיק נע בקו חד מימדי, עם הסתברות שווה לקפוץ למעלה או למטה. בממוצע, אין זרם במערכת, אך מתוך פרקי הזמן בהם החלקיק מבלה במצבים השונים, לפני קפיצה למעלה לעומת לפני קפיצה למטה, ניתן להסיק שבירת סימטריה להיפוך בזמן

חלקיק נע בקו חד מימדי, עם הסתברות שווה לקפוץ למעלה או למטה. בממוצע, אין זרם במערכת, אך מתוך פרקי הזמן בהם החלקיק מבלה במצבים השונים, לפני קפיצה למעלה לעומת לפני קפיצה למטה, ניתן להסיק שבירת סימטריה להיפוך בזמן.

 

לינק למאמר 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

מהנדסים מים בקיץ הישראלי

מחקר

12.08.2019
מהנדסים מים בקיץ הישראלי

החוקרות והחוקרים מבית הספר להנדסה מכנית עוקבים אחר בעלי החיים והצמחים שחיים בתנאי קיצון, לומדים על התכונות הייחודיות שהם סיגלו לניצול חכם של מים, ומפתחים דרכים שיעזרו גם לנו ואפילו למחשבים שלנו לשרוד בחום שעוד מצפה לנו בהמשך.

  • מחקר
  • הנדסה מכנית

החוקרת ד"ר בת אל פנחסיק מפתחת מערכות ביומימטיות, המחקות פתרונות של חיות מדבריות לבעיית המים. במעבדה שלה Biomimetic Mechanical Systems and Interfaces מתמקדמים בביומימטיקה. כלומר, לומדים מאופן פעילותן של חיות בטבע, למשל חרקים וזוחלים, על מנת למצוא פתרון לבעיות אנושיות. את הפתרונות הטבעיים מתרגמים לשימוש בחומרים חכמים שהופקו במעבדה, ומנגנונים פיסיקליים והנדסיים, למשל רובוטים, שמחקים את פעולות החרקים והזוחלים.

 

החוקר ד"ר הרמן האושטיין המתמקד במעבדה שלו MyFET Lab בתחומים של מעבר חום והזרימה בסקאלות מיקרו, מנגנוני קירור שקוטרם הוא בסדר גודל של עובי שערה בודדת. כיום אחד הגורמים המגבילים את תעשיית האלקטרוניקה היא צפיפות הרכיבים שדורשים הספקת חשמל. מצד אחד המהנדסים במעבדה רוצים להצליח להכניס כמה שיותר רכיבים בשטח קטן מאוד, מה שגורם לרכיב להתחמם מאוד, ומצד שני – למצוא דרכים להוציא מהם את החום באופן הכי יעיל. על מנת לקרר את הרכיבים יש צורך באספקת זורם קר, שיסלק את החום מתוך מערכים בסדר הגודל של מיקרונים (עובי שערה הוא 100-50 מיקרון). המחקר של ד"ר האושטיין וצוותו תורם לתכנון מערכות אלקטרוניות מורכבות כגון מחשבים, מערכות נשק ומכשור רפואי.

 

הכנסו לקישור לכתבה המלאה: https://www.tau.ac.il/article/using-every-drop

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

 

 
אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>