School of Mechanical Engineering Asaf Ben Neriah

27 ביוני 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Asaf Ben Neriah

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, June 20, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Groundwater remediation by air sparging: improving efficiency by inducing mixing

Asaf Ben Neriah

 PhD. student of Dr. Amir Paster

 

Groundwater contamination due to leakage, designated or accidental releases of volatile organic compounds is a major problem worldwide. Remediating the contaminated water is crucial for maintaining groundwater as a drinking source, and preventing the expansion of the contaminant plume into clean water.

Air sparging is a relatively simple and inexpensive remediation technique, commonly applied for removing volatile organic compounds from the water. Since the 1980s, air sparging was successfully used at sites where the contaminants are located at the upper part of the aquifer and the soil is relatively permeable (i.e., sandy soils).

Air sparging is commonly applied for long time periods. One important observation, seen in laboratory and field conditions, is that as the system approaches steady state, the remediation efficiency decreases. The decrease in efficiency was linked to the nearly stagnant conditions in the aquifer and very limited mixing, which characterize prolonged operation. This research was aimed at improving the remediation efficiency by utilizing the transient stages of air sparging, in which mixing is significant.

Using a 2D laboratory model and a numerical code (T2VOC, TOUGH2), several approaches for enhancing the groundwater remediation process were studied. These approaches include periodically changing the air injection rate, applying short duration- high pressure- pulses to the injection system, and establishing a methodology for estimating the optimal system characteristic time. Results from the current study highlight the significance of mixing to the remediation process, and the importance of planning an injection scheme which fits the specific characteristics of the remediated site. They also show that the optimal frequency of periodic injection can be approximated by the characteristic time of the relaxation of a large pressure perturbation in the aquifer..

School of Mechanical Engineering John E. Dolbow

17 באוקטובר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering John E. Dolbow

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, October 17, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Models and Simulations of the Surfactant-Driven

Fracture of Particle Rafts

 

John E. Dolbow

Professor of Civil and Environmental Engineering,

Mechanical Engineering and Materials Science,

and Mathematics

Duke University

 

When a densely packed monolayer of hydrophobic particles is placed on a uid surface

the particles interact through capillary bridges, leading to the formation of a particle raft or

\praft" for short. Densely packed monolayers exhibit a two-dimensional elastic response, and

they are capable of supporting both tension and compression. The introduction of a controlled

amount of surfactant generates a surface tension gradient, producing Marangoni forces and

causing the surfactant to spread, fracturing the monolayer. These systems are of interest to

materials scientists and engineers because they provide an idealized setting for investigating the

interplay between uid ow and fracture. Previous studies of the surfactant-induced fracture

of prafts have examined the role of viscosity and the initial packing fraction on the temporal

and spatial evolution of the fractures. The potentially important role of di_erences in surface

tension between the surfactant and the underlying uid has not been explored.

This seminar will describe a new continuum-based model and simulations that account for

the interplay between the pressure exerted by a spreading surfactant and the elastic response

of the praft, including the fracture resistance. This is e_ected through the use of a surfactant

damage _eld that serves as both an indicator function for the surfactant concentration, as well

as the damage to the monolayer. Stochastic aspects of the particle packing are incorporated into

the model through a continuum mapping approach. The model gives rise to a coupled system

of nonlinear partial di_erential equations, with an irreversibility constraint. We recast the

model in variational form and discretize the system with an adaptive _nite element method. A

comparison between model-based simulations and existing experimental observations indicates

a qualitative match in both the fracture patterns and temporal scaling of the fracture process.

Based on the model, we determine a dimensionless parameter that characterizes the ratio

between this driving force and the fracture resistance of the praft. Interestingly, while our

results indicate that the stochastic aspects of the packing are important to the fracture process,

we _nd that regimes of fracture are largely governed by di_erences in surface tension. Finally,

we support our _ndings with newly designed experiments that validate the model and con_rm

the trends inferred from the simulations.

 

 

 

 

 

School of Mechanical Engineering Semion Greiserman

24 באוקטובר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
 School of Mechanical Engineering Semion Greiserman

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, October 24, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

 Solar hydrothermal deconstruction of green macroalgae biomass for biofuel production

 

Semion Greiserman

MSc. Student of Dr. Alex Golberg and Prof. Avi Kribus

 

Biomass deconstruction to fermentable sugars is a major challenge for biorefineries. Traditional methods either employ acid or enzymatic hydrolysis, which are expensive and could damage the environment. Thermal hydrolysis is a green technology for biomass deconstruction, carbonization, liquefaction, and gasification.  However, subcritical hydrolysis generates a wide range of products from a heterogeneous raw material such as biomass. In this work, Taguchi orthogonal arrays was used for the experimental design and investigation of comparative significance of subcritical water process’s temperature, treatment time, solid load and salinity on glucose, xylose, rhamnose, fructose and galactose release from green macroalgae an emerging biorefinery feedstock. We also investigated the impact of the process parameters on the production of 5-hydroxymethylfurfural (5-HMF), an important biofuel intermediate, which, however, is a major fermentation inhibitor. The optimum process parameters for maximum release of each monosaccharide and minimum production of 5-HMF was determined. The solid residue (hydrochar) heating value and chemical composition were also determined. Using the results from the experiments a simplified simulation of combined solar electricity generation and fuel (ethanol) production plant was analyzed and will be presented.

 

 

 

 

 

 

 

 

School of Mechanical Engineering Prof. John Dolbow

17 באוקטובר 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering Prof. John Dolbow

והכרזת 6 הזוכים בקול קורא

21 מאי 2018
חנוכת מכון שמלצר לתחבורה חכמה
בתמונה (מימין לשמאל): אסי שמלצר, עתליה שמלצר ופרופ' קלפטר

מכון שלמה שמלצר לתחבורה חכמה מהווה מוקד רב-תחומי המאגד חוקרים באוניברסיטת תל אביב בתחומי בינה מלאכותית ומדעי הנתונים, חקר ביצועים וניתוח גורמי אנוש. מטרת המכון היא לקדם מחקר יישומי ולעודד שיתופי פעולה, שייתרמו לכלכלה ולחברה בישראל. המכון יקיים כנסים וסדנאות, יממן מחקר מתקדם, יפרסם ניירות עמדה, יספק תשתיות מחקר ויצור פלטפורמות למפגש והעברת ידע בין האקדמיה לסקטור העסקי והציבורי בזירת התחבורה החכמה, בארץ ובעולם.

המכון נחנך ב- 4/5/2018 במסגרת אירועי חבר הנאמנים של האוניברסיטה,  בהשתתפות משפחת שמלצר, נשיא האוניברסיטה - פרופ' יוסי קלפטר, רקטור האוניברסיטה - פרופ' ירון עוז סגן נשיא לקשרי חוץ - אלעד עמוד, דיקאן הפקולטה להנדסה - פרופ' יוסי רוזנוקס ראש מכון שמלצר - ד"ר טל רביב, חברי הנהלת המכון – פרופ' מיכל צור ופרופ' עירד בן גל, מנהלת מכון שמלצר - ד"ר עלית אופנהיים, מנכ"לית אגודת הידידים - הגב' סיגל אדר, סמנכ"לית אגודת הידידים - עו"ד עדי אולמרט ואורחים נוספים. 

 

המכון פרסם קול קורא ראשון בו זכו 6 תלמידי מחקר ממחלקות שונות באוניברסיטת תל אביב. המחקרים הזוכים הוכרזו במסגרת טקס חנוכת המכון, והם עוסקים בסוגיות הבאות:

  • מודל חדירה של כלי רכב חשמליים לשוק. ההשפעה של מדיניות הממשלות והתקדמות הטכנולוגיה על התפוצה של טכנולוגית הנעה זו. (גיל ברנע, בית הספר למדיניות ציבורית דוקטורנט בהנחיית  פרופ' איתי סנד)
  • הקמת מעבדה לחקר אלגוריתמים בתחום הנהיגה האוטונומית. המעבדה תשמש כתשתית למחקר והוראה בפקולטה להנדסה. (איל וייס מבית הספר להנדסת חשמל, דוקטורנט בהנחית פרופ' מיכאל מרגליות)
  • תכנון מיטיבי של התקנת חיישניים במערכות מורכבות, בפרט בכלי רכב ובערים חכמות. (יפעת פינקוביץ מהמחלקה להנדסת תעשייה, דוקטורנטית בהנחייתם של פרופ' עירד בן גל וד"ר טל רביב).
  • פיתוח לוגיקה רכה עבור רכבים אוטונומיים. (משה קליין מהמחלקה להנדסת תעשייה, דוקטורנט בהנחיה של פרופ' עודד מימון)
  • פיתוח אלגוריתמים להפקת מידע בצורה מדויקת ויעילה מסיבים אופטיים הטמונים בקרקע, לטובת שימושים בתחום התחבורה החכמה. (ליהי שילה מבית הספר להנדסת חשמל, דוקטורנטית בהנחייתם של פרופ' אבישי אייל וד"ר רג'א ג'יריס).
  • פיתוח מסגרת למידול תהליכי פיתוח של מערכות מורכבות בכלל ובתחום התחבורה בפרט. (אבי שקד מהמחלקה להנדסה מכנית, דוקטורנט בהנחיית פרופ' יורם רייך).

School of Mechanical Engineering Roee Yuval Spin and Omri Yannay

28 במאי 2018, 14:00 - 15:00 
בניין וולפסון חדר 206  
0
School of Mechanical Engineering  Roee Yuval Spin and Omri Yannay

 

 

School of Mechanical Engineering Seminar
Monday, May 28, 2018 at 14:00
Wolfson Building of Mechanical Engineering, Room 206

 

Ceramic Matrix Composites (CMCs): Manufacturing and Microstructural Effects on the Mechanical Properties using the Parametric HFGMC

 

Omri Yannay

 M.Sc. student of Prof. Rami Haj-Ali

 

Advanced Carbon-based Ceramic Matrix Composites (CMCs) are important in today's aviation industry because of their unique properties - can withstand high temperature and severe erosion conditions, while maintaining the composites strength at relatively lower weight.

However, these unique properties depend on the microstructure of the formed material through the CMC's production process. The use of refined micromechanical methods, such as the parametric High Fidelity Method of Cells (HFGMC) is crucial in order predict the overall thermos-mechanical properties and how they are related to the optimal ratio of the phases, towards improving the desired and objective properties. Furthermore, applying this new micro-scale analysis can save time and money by replacing the experiments on such expensive material system.  It can even generate added values that one cannot extrapolate in standard experimental approach such as predicting the overall anisotropic mechanical properties, and the stress states at the micro scales. It should be noted that all inputs for the proposed micromechanical simulations can be easily obtained by using basic physical measurements combined with data in the open literature, such as material's microstructure and phase's properties.

This research presents a new framework for prediction the overall thermo-mechanical properties of CMCs using the parametric HFGMC starting from the manufacturing process of CMCs by Liquid Silicon Infiltration (LSI) method. For each production stage, a Repeated Unit Cell (RUC) model is applied in order to achieve more reliable results at each production level.  The proposed micromodels are nested in a multi scale analysis in order to generate the overall effective properties of the CMC.  Finally, the effects of material microstructural features on the overall elastic properties are investigated, reported and discussed.

 

Micro-mechanics based Progressive Fatigue Damage models of laminated composites

Royi Yuval Safin

MSc Student of Prof. Rami Haj-Ali

The increased demand on new advanced composites in the aerospace, automotive, civil and military applications necessitates predictive fatigue failure models of composite materials and structures at different loadings. While the mechanical behavior under fatigue loading of metallic materials is well established, this is not the case for composites. Fatigue in composite materials is associated with several interacting damage mode systems, often leading to a sudden brittle failure.

Predictive fatigue damage models in composite materials are also challenging due to the complex failure mechanisms under static and fatigue loading and because of the anisotropic elastic and strength properties.  However, a good model have the potential to reduce the large experimental effort needed to test for different composite material systems and their constituents, such as fibers, matrices, lamination stacking sequences etc. In addition, fatigue experiments are expensive as a single coupon may need to be tested for up to several weeks.

In this study, two micromechanical methods are proposed for the fatigue failure prediction of unidirectional and laminated composites  under general loading with minimal dependence on empirical parameters. Both of the methods are based on using the generalized method of cells (GMC) micromechanical model. The first approach is based on fatigue micro-failure criteria, which are applied separately to the fiber and matrix regions, while the second approach is based on a damage law evolution for isotropic materials that applied only to the matrix.

The use of micromechanics allows the study of damage at both the micro and macroscales that explicitly recognize the fiber and matrix constituents. The proposed GMC-Fatigue constitutive equations enable a

multi-scale fatigue analysis of

laminated composite structures.  To that end, a new multi-scale fatigue module is implemented in the Abaqus FE code for the fatigue analysis of plates with an open hole.  Life predictions are demonstrated along with the possibility for residual strength analysis, see Fig.1.  Good prediction ability is demonstrated and compared to published test data in the literature.

 

 
 

 

 

 

תיבת טקסט: GMC 
Micromechanics

 

 

  

 

 

 

 

 

 

Figure 1:  Schematic illustration a micromechanical repeating unit-cell GMC model (top row) coupled with fatigue analysis of laminated composite materials and structures

 

"פורום ערים חכמות": יחסי מרכז-פריפריה

17 ביוני 2018, 15:00 - 19:00 
בניין יד-אבנר, אולם 115 (החוג לגיאוגרפיה, רח' זליג 10)  

מכון שלמה שמלצר לתחבורה חכמה מזמין חוקרים/ות באוניברסיטת תל אביב למפגש הראשון של

פורום ערים חכמות

 

תאריך: המפגש הראשון יתקיים ב-17/6/2018

שעה: 15:00-19:00

מיקום: בניין יד-אבנר, אולם 115 (החוג לגיאוגרפיה, רח' זליג 10)

לפרטים נוספים על הפורום

הזמנה וסדר יום

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>