Department of Materials Science and Engineering - Special Seminar

Laser technologies: fabrication of biomaterial thin films

Dr. Ion N. Mihailescu

National Institute for Lasers, Plasma and Radiations Physics, Lasers Department

Romania

25 בספטמבר 2016, 15:00 
Room 206, Wolfson Mechanical Engineering Building  
Department of Materials Science and Engineering - Special Seminar

מכוניח מרוץ שנבנתה במסגרת פרוייקט שנה ד' של סטודנטים בבית הספר להנדסה מכנית שתתפה בתחרות בינלאומית

01 אוגוסט 2016
פרוייקט גיוס המונים - בניית מכונית מרוץ

הסטודנטים שלנו בת"א לא רק עוסקים בהנדסה אלא גם בשיווק, בניה, ותחרות. כול זאת באופן מעורר כבוד. העזרה של כל אחד תביא אותם יותר קרוב למטרה ולנו יהיו בוגרים מנוסים יותר ומוכנים לאתגרי המחר. זה טוב לכולנו!
בהצלחה.
פרופ' יורם רייך, אחראי פרויקטי גמר, הנדסה מכנית ומנטור של הקבוצה.

https://www.jewcer.org/project/israeli-students-racing-car/

סיכום התחרויות עד כה:

לאחר שבועיים עמוסים מאוד בתחרויות, הקבוצה בדרכה חזרה הביתה, עייפים אך מרוצים!!

בתחרות הראשונה, בהונגריה, עברנו את בדיקות השופטים, אך לא התחרנו במקצים הדינמיים בעקבות תקלות טכניות שהתגלו במהלך הבדיקות הדינמיות. את התקלות הצלחנו לתקן בתנאי שטח במחנה, לפני התחרות בצ'כיה. לתחרות זו הקבוצה הגיעה מוכנה, עברנו את כל בדיקות השופטים בהצלחה והתחרנו בכל המקצים הדינמיים! במקצה הEndurance הקבוצה השתתפה, אך לצערנו בעקבות תקלות טכניות לא עלה בידנו להשלים את המקצה.

להלן תוצאות שתי התחרויות:

הונגריה:
Overall - 19 מתוך 34
Cost - 11
Design - 19
Business - 16

צ'כיה:
Overall - 18 מתוך 29
Cost - 15
Design - 21
Business - 16
Acceleration - 20
Skidpad - 18
Autocross - 15

בהזדמנות זו, אנו רוצים להודות לכל הספונסרים שמלווים אותנו בפרויקט המדהים הזה, ולמנחים רפי הרשקוביץ ואסף קציר על הליווי הצמוד, גם במהלך התחרות! כמו כן לTechnion Formula Student Team על העזרה והסיוע במהלך התחרות. כל הכבוד על התוצאות המרשימות בתחרויות!

תמונות מהתחרות:

Omer Netzerel Ziv Rozenker Itai Zadok Sabrina Shlain Dima Medvednik Ameer Shreef Oren Yadan Yigal Kraus Eylon Avigur Mariana Sarely Roni Cohen Lior Reznik Gal Karamani Sam Bochlin תומר תום   Lior Chertkow Shmulik Hayo Lior Kirshenberg

ידיעות נוספות בנושא

'מהנדסים לא גבולות' שבוער להם לשנות

01 אוגוסט 2016
'מהנדסים לא גבולות' שבוער להם לשנות

ראיון עם מיכל אליעזר, ראש 'פרויקט טנזניה' בסניף אוניברסיטת תל אביב של עמותת 'מהנדסים ללא גבולות', על מיזם של אנשים עם כח רצון חזק ואמונה בלתי מתפשרת בדרך

http://www.ynet.co.il/articles/0,7340,L-4827623,00.html

ברכות לפרופ יורם רייך על פרסום סיפרו החדש בחודש יולי 2016

01 אוגוסט 2016
ברכות  לפרופ יורם רייך על פרסום סיפרו החדש בחודש יולי 2016

ברכות לפרופ' יורם רייך על פרסום סיפרו החדש בחודש יולי 2016, עם הדוקטורנטית שלו לשעבר ד"ר יעל הלפמן כהן,

 Yael Helfman Cohen, Yoram Reich, Biomimetic Design Method for Innovation and Sustainability,

בהוצאת Springer-Nature

http://www.springer.com/in/book/9783319339962

מבנה הנדסי מורכב, המכונה מטא-חומר או "חומר חכם", יכול לשנות את צורתו ולהתאים עצמו לכל מבנה. החוקרים מאמינים שהמטא-חומר יסייע בבניית "רובוטים רכים" ובפיתוח פרוטזות לנכים

28 יולי 2016

ברכות חמות לד"ר יאיר שוקף ולסטודנט שלו איל תאומי מביה"ס להנדסה מכנית על פרסום מאמרם ב Nature היום (מצורף)

כתב העת הפיק סרטון שיווקי: https://www.youtube.com/watch?v=9UfMrOa4wKs

ראו כיסוי תקשורתי :

http://www.haaretz.co.il/news/science/.premium-1.3020535

http://www.ynet.co.il/articles/0,7340,L-4834022,00.html

מתוך כתבה ב"הארץ":

מדענים ישראלים בשיתוף עם חוקרים הולנדים פיתחו לראשונה מטא-חומר חדשני שיכול לשנות את צורתו לכל מבנה בו יחפצו. המטא-חומר, או "חומר חכם", הוא מבנה הנדסי מורכב שעשוי מלבני גומי ומודפס במדפסת תלת-מימד. המבנה הייחודי שלו מאפשר התאמה מושלמת למשטחים בלתי אחידים בעלי בליטות ושקעים. לדברי החוקרים, תכונותיו של המטא-חומר יסייעו בבניית פרוטזות לקטועי גפיים, ביצירת רובוטים רכים ובפיתוח טכנולוגיות לבישות, שיש להצמידן לגוף בדיוק רב כדי להפעילן באופן מיטבי. פיתוח המטא-חומר נמשך קרוב לשלוש שנים והמחקר אודותיו מתפרסם הערב (רביעי) בכתב העת המדעי היוקרתי Nature. על אף שנהוג לשייך את תחום פיתוח החומרים לעולם...

קישור למאמר

 

4/8/16

You are invited to attend a lecture

by

Balanced Electric-Magnetic Absorber Green’s Function Method for MoM Matrix Thinning

 



 

Naor Shay

MS.c. candidate of

Professor Raphael Kastner of Electrical Engineering, Physical Electronics Department

 

A new numerical approach to solving the classic problem of electromagnetic (EM) scattering off a perfect electric object is studied with the objective of substantially reducing computation times. The method considered here is the frequency domain Method of Moments (MoM) formulation involving the use of a dyadic Green’s function (GF). Traditionally, this GF is formulated in free space, as afforded by the equivalence principle. However, since the resultant equivalent sources generate a null filed inside the scatterer volume, the door is open for the inclusion of arbitrary fillers therein.

 

We suggest the usage of balanced absorbers as fillers and using their Green’s function instead of the free space one. To this end, the solution of the essentially volumetric problem of the absorber is required as a preprocessing stage. Balanced absorbers have both electric and magnetic Weston-like or Perfect Matched Layers (PML) loss mechanisms. Many interactions between pairs of base functions are then virtually eliminated. As a result, the MoM matrix, representing the GF, is significantly thinned.

 

The cost of calibrating this modified GF using the volumetric representation of the absorber is investigated. The effort incurred in the pre-processing stage can be alleviated by choosing absorber configurations that apply to many problems with high degrees of symmetry, thin absorbing shells rather than volumetric scatterers or homogeneous absorbers that lend themselves to surface formulations.

 

It is shown that this form of thinning has little effect on the accuracy. Moreover, most of the thinned elements need not be computed at all.

 

Finally, we demonstrate how this technique can solve some oscillation phenomena related to the EFIE in EM scattering problems.

 

Thursday, August 4th, 2016, at 15:00

Room 011, Kitot Building

04 באוגוסט 2016, 15:00 
 
4/8/16

You are invited to attend a lecture

by

Balanced Electric-Magnetic Absorber Green’s Function Method for MoM Matrix Thinning

 



 

Naor Shay

MS.c. candidate of

Professor Raphael Kastner of Electrical Engineering, Physical Electronics Department

 

A new numerical approach to solving the classic problem of electromagnetic (EM) scattering off a perfect electric object is studied with the objective of substantially reducing computation times. The method considered here is the frequency domain Method of Moments (MoM) formulation involving the use of a dyadic Green’s function (GF). Traditionally, this GF is formulated in free space, as afforded by the equivalence principle. However, since the resultant equivalent sources generate a null filed inside the scatterer volume, the door is open for the inclusion of arbitrary fillers therein.

 

We suggest the usage of balanced absorbers as fillers and using their Green’s function instead of the free space one. To this end, the solution of the essentially volumetric problem of the absorber is required as a preprocessing stage. Balanced absorbers have both electric and magnetic Weston-like or Perfect Matched Layers (PML) loss mechanisms. Many interactions between pairs of base functions are then virtually eliminated. As a result, the MoM matrix, representing the GF, is significantly thinned.

 

The cost of calibrating this modified GF using the volumetric representation of the absorber is investigated. The effort incurred in the pre-processing stage can be alleviated by choosing absorber configurations that apply to many problems with high degrees of symmetry, thin absorbing shells rather than volumetric scatterers or homogeneous absorbers that lend themselves to surface formulations.

 

It is shown that this form of thinning has little effect on the accuracy. Moreover, most of the thinned elements need not be computed at all.

 

Finally, we demonstrate how this technique can solve some oscillation phenomena related to the EFIE in EM scattering problems.

 

Thursday, August 4th, 2016, at 15:00

Room 011, Kitot Building

 

2/8/16

You are invited to attend a lecture

Performance analysis of a photon-enhanced thermionic emission solar converter with a GaInP based cathode

By:

Amit Shaked

M.Sc student under supervision of Prof. Abraham Kribus and Prof. Yossi Rosenwaks

 

Abstract

A solar converter based on photon-enhanced thermionic emission (PETE) with a GaInP cathode was simulated in detail including realistic structure and material properties. The model describes the cathode absorber with front and back barrier layers, the behavior of space charge in the inter-electrode gap, and spatially distributed generation, bulk recombination, and surface recombination effects. Experimentally measured values of crucial material properties as a function of temperature were used to represent the realistic behavior of the device. Results show a large variation of predicted conversion efficiency as a function of the anode work function and the cathode’s emitter surface electron affinity. The sunlight concentration and cathode temperature required for optimal efficiency also vary greatly. For the most optimistic surface property values the converter efficiency is about 13%. Major issues that limit the efficiency are: the high bandgap leading to high transmission loss, the limited operation temperature permitted for the cathode material, and the sharp reduction in cathode SRH lifetime with increasing temperature.

 

On Tuesday, August 2nd , 2016, 13:00

Room 105, Porter School of Environmental Studies

 

02 באוגוסט 2016, 13:00 
Room 105, Porter School of Environmental Studies  
2/8/16

 

סמינר-מחלקתי-ביה"ס-להנדסה-מכאנית-Lior-Avivi-and-Hila-Ben-Gur

09 בנובמבר 2016, 10:00 
וולפסון 206  
0
סמינר-מחלקתי-ביה"ס-להנדסה-מכאנית-Lior-Avivi-and-Hila-Ben-Gur

 

 

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, November 9, 2016 at 15:00
Wolfson Building of Mechanical Engineering, Room 206

 

Hemodynamic Evaluation of the Abdominal Aorta post 'Chimney' Endovascular

Aneurysm Repair

 

Hila Ben Gur
M.Sc. Student of Dr. Gábor Kósa and Dr. Moshe Brand

 

An abdominal aortic aneurysm (AAA) is defined as a local dilation of the abdominal aorta with a diameter of 3 cm, or an increase of 50% from its native diameter. Ruptured aortic aneurysms are a main cause of death in the elderly population throughout the western world, with a mortality rate of 85 - 90%. In recent years, more aneurysm repairs are performed endovascularly using stent grafts (SGs) rather than open repairs. Endovascular aneurysm repairs (EVAR) are minimally invasive procedures that involve delivery of SGs to the aneurysm site through the arterial system.

AAAs located near the ostia of the renal arteries present a technical challenge for standard EVAR procedures. A standard SG delivered to such an AAA might block the ostia of the renal arteries, thus impeding their function. A widely used solution for this situation is a fenestrated SG system. In order to maintain blood flow, the main SG contains openings through which branching SGs are inserted into the renal arteries. This solution necessitates a custom made SG tailored to the aortic morphology of each specific patient. This system is costly and involves a lengthy fabrication process, and as such is not relevant in critical cases.  A recent alternative to the fenestrated SG system is the 'chimney' endovascular aneurysm repair (ChEVAR). This technique involves the insertion of standard tubular SGs into the renal arteries parallel to the main aortic SG. These additional SGs are termed 'chimneys' or 'Chimney' Stent Grafts (CSGs).

In this study, computational fluid dynamics (CFD) is employed to investigate idealized models of two configurations of an aorta post ChEVAR. These configurations differ in CSG protrusion length. The CSGs have free ends that protrude above the main aortic SG by 30 mm in the longer configuration and by 10 mm in the currently accepted surgical configuration. The models are evaluated and compared to a healthy aorta model.

Results demonstrate that the presence of CSGs appears to cause negative variations in the velocity and wall shear stress (WSS) fields. These include confined regions of stagnation and recirculation also characterized by somewhat lower WSS. Nevertheless, in general, the flow field seems to remain nearly unaffected in adjacent segments upstream and downstream from the site of the CSGs. Furthermore, the flow field in the aortic duct seems to remain laminar, further indicating the confined influence of the ChEVAR procedure. The effects of the CSGs seem slightly more distinct for the longer CSG configuration than for the shorter one. However, we conclude that the longer configuration cannot be ruled out as a potentially valid surgical option since the differences between the two configurations are mild.

To the best of our knowledge, this study represents the first evaluation of hemodynamic effects of the ChEVAR procedure on the abdominal aorta following an infrarenal AAA.

 

 

 

 

 

School of Mechanical Engineering Seminar
Wednesday, November 9, 2016 at 15:00
Wolfson Building of Mechanical Engineering, Room 206

 

 

 

Measurement of Volumetric Convection Coefficient
in Porous Media

Lior Avivi

MSc Student of Prof. Avi Kribus

 

The combination of high surface area and low pressure drop makes the use of porous media (PM) as heat or mass exchangers a considerable interest in many applications such as combustors, incinerators, catalyst support media in chemical reactors, regenerative heat exchangers, and volumetric solar receivers. Increasing the convection capabilities will result with a direct impact on the efficiency and economics of these applications. Due to the tortuous and complex nature of flow in PM, measurement of convective heat transfer poses many difficulties, and previous methods were relying on complex transient procedures and conduction-based sidewall heating.

A new method is presented for measurement of the volumetric convection coefficient in porous media, using a steady state experiment in a low-speed wind tunnel and volumetric electrical heating of the test sample. This approach is enabled by 3-D printing of the tested geometry allowing high flexibility in the tested geometry, and the availability of an electrically conductive polymer that allows distributed heating of the sample. The experimental method is described and demonstrated with a study of convection in periodic porous meshes, intended for optimization of structures for solar volumetric absorbers. One PM design candidate for high-performance solar volumetric absorbers will be presented and analyzed, and the measured volumetric convection coefficients will be compared to existing correlations in the literature. Still, when developing new experimental methods, some challenges are yet to overcome, and will also be discussed.

 

 

 

 

 

 

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>