Material Sciences and Engineering: Departmental Seminar

R&D activities in Elbit-Cyclone with Additive Manufacturing/3D Printing

of metal parts  for aerospace application

Mr. Oleg Naigertsik

Technologies Development Manager | Elbit Systems-Cyclone Ltd.

18 בנובמבר 2015, 16:00 
Room 103, Engineering Class (Kitot) Building  

Material Sciences and Engineering: Departmental Seminar

Nanoscale Mapping of Electrostatic and Magnetic Fields by Electron Holography

Prof. Amit Kohn

Department of Materials Science and Engineering, Tel-Aviv University

04 בנובמבר 2015, 16:00 
Room 103, Engineering Class (Kitot) Building  
 Material Sciences and Engineering: Departmental Seminar

סמינר מחלקתי - יובל אלבר

The Mixed Fleet Bus Scheduling Problem

27 באוקטובר 2015, 14:00 
בניין וולפסון חדר 206  

Recently, cities have begun to incorporate battery-powered electric buses in their bus fleets. For example, Dan, the largest bus operator in the greater Tel Aviv area, declared its plan to acquire 5 electric buses this year, after a 2-year long pilot with one bus. The transition to electric buses is motivated by the technological evolution of high-capacity batteries for electric vehicles and the growing public awareness to the shortfalls of the currently prevailing diesel technology. Due to the risk involved in adapting new technologies and because the operational lifespan of diesel buses is 12-15 years, it is likely that the transition to electric buses will occur gradually. Therefore, for an extended period, there will be a need to plan the transit system operation of fleets that contains at least two types of buses. These two types have significantly different operational cost structures and range limitations. In particular, the operational range of electric buses is limited and thus, charging or battery-swapping operations should be included in their daily schedule. This study extends the classic bus scheduling models and solution methods to the more complex problem of scheduling mixed fleets. We formulate the model as an integer program and devise a math-heuristic that can solve larger instances. These solutions method are tested and compared using instances that are based actual time-tables of Dan in Tel Aviv and Metro-Dan in Beer-Sheva.

 

This work was performed under the supervision of Dr. Tal Raviv.

ההרצאה תתקיים ביום חמישי 27.10.15 בשעה 14:00 בחדר 206, בנין וולפסון הנדסה, הפקולטה להנדסה, אוניברסיטת תל-אביב.

22/10/15

22 באוקטובר 2015, 15:00 
011 kitot  
22/10/15

 

You are invited to attend a lecture

By:

 

Y. Kaganovsky, Duke University.

 

Physics-Based Computational Imaging in the Era of Big Data: An X-Ray Perspective

Physics-Based Computational Imaging is the process of reconstructing a physical object represented by a digital image, which is often high-dimensional (e.g., 3D, hyperspectral, movie of 3D images), by computational inversion of measured data that is not directly related to the imaged object. This inverse problem is inherently ill-posed due to the non-direct and incomplete nature of the measurements, model uncertainties, and noise. In my talk I will discuss in detail two examples of computational imaging:                (1) X-ray computed tomography (CT), which is used for 3D medical imaging of humans/animals, quality control in industrial manufacturing, and security inspections, to name a few; (2) Coded-aperture x-ray coherent scatter imaging, which is a novel imaging modality proposed by Prof. Brady’s group at Duke University that allows one to identify the molecular structure of materials in security and medical applications. Traditional methods used for data inversion in most actual imaging systems employ one-shot methods, e.g., Fourier-based inversion or filtered back-projection.  In recent years, there has been an increased interest in statistical iterative inversion methods based on minimizing some cost function that incorporates additional physical information about the system, the measured signals, and prior knowledge about the imaged object, which makes the inverse problem less ill-posed.  Despite their many advantages, iterative methods are computationally much more expensive (require more CPU time and memory) than one-shot methods.  This is becoming a big challenge as sensors and detectors are becoming faster and more accurate, leading to more measurements and to the accumulation of big data, which increases storage requirements and processing time. There is also an increasing demand for high resolution images, resulting in very high dimensional solution spaces (another aspect of big data), which also increases reconstruction time, e.g., in 3D x-ray CT there are billions of image voxels to be reconstructed; this becomes an even bigger problem for hyperspectral or 4D images. In medical and security applications, time may be critical, so faster inversion methods need to be developed. Another challenge in iterative methods is the determination of model parameters, which are object dependent and therefore unknown a priori. I will present recent developments in iterative inversion algorithms and computational approaches that address the above challenges. I will highlight a non-conventional method called ``Automatic Relevance Determination (ARD)’’, which originated in machine learning, for principled automatic determination of model parameters. I will present an extension of ARD to physically-based models used in CT, called ``Variational ARD’’ [1], which can accurately account for photon shot noise and Beer's law. This method is over an order of magnitude faster than previous ARD methods for big data.

[1] Y. Kaganovsky et al., “Alternating Minimization Algorithm with Automatic Relevance Determination for Transmission Tomography under Poisson Noise”, accepted to the SIAM Journal on Imaging Sciences.

Thursday, October 22, 2015, at 15:00

Room 011, Kitot building

 

 

 

 

 
  • כל החוקרים
  • כל החוקרים

20.10.15

You are invited to attend a seminar by:

Gur Lubin

Optical investigation of carbon nanotube- quantum rod nanocomposites for retinal prosthesis applications

 

20 באוקטובר 2015, 15:00 
011 kitot  
20.10.15

 

הפקולטה להנדסה מברכת את המרצים והמתרגלים, בסגל הבכיר והזוטר, שדורגו גבוה בסקרי שביעות הרצון מההוראה בשנת הלימודים תשע"ה ונכללו ברשימת מאה מצטייני ההוראה של אוניברסיטת ת"א: השנה אנחנו עם מספר חסר תקדים של 13 מתוך 100

19 אוקטובר 2015

מצטייני הסגל הבכיר:

פרופ' שי אבידן,  פרופ' אלכס ברונשטיין,  פרופ' משה טור,  פרופ' רפי קסטנר,  פרופ' דנה רון,  פרופ' אריה ירדאור,  דר' עופר עמרני,  פרופ' יצחק הררי,  ד"ר אמיר פסטר,  ד"ר שרון זלוצ'יבר,  פרופ' שחר ריכטר,  פרופ' מיטל זילברמן, דר' בנימין (בני) אפלבאום.

 

מצטייני הסגל זוטר

מתמטיקה

ישע

נדב

מתמטיקה

עמיר

מיכל

חשמל

ברוידו

מוניקה

חשמל

אוסטרומצקי

יונתן

חשמל

בר-און

עופר

חשמל

ברסטיז'בסקי

קונסטנין

חשמל

דוד

לירון

חשמל

דמרי

רועי

חשמל

חצקלביץ

רון

חשמל

לנדסברג

נפתלי

חשמל

מזור

ירדן

חשמל

קונסנס

מור

חשמל

קיסרי

יובל

חשמל

שיטרית

אסתר

ביו-רפואה

בלום

עומרי

ביו-רפואה

סבי

רננה

ביו-רפואה

צודיקוביץ'

יבגני

הנדסת תעשייה

איזנהנדלר

אוהד

הנדסת תעשייה

אלבר

יובל

מדע והנדסה של חומרים

מלכי

מעיין

 
 

כל הכבוד ותודה למצטיינים.

 

EE Seminar: Towards an Inexpensive, Reliable and Intelligent Archival Solid-State Drive

~~(The talk will be given in English)

Speaker:  Yue Li
                   Caltech

Monday, November 2nd, 2015
15:00 - 16:00
Room 011, Kitot Bldg., Faculty of Engineering
Towards an Inexpensive, Reliable and Intelligent Archival Solid-State Drive
Abstract
Archival data once written are rarely accessed by user, and need to be reliably retained for long periods of time. The challenge of using inexpensive NAND flash to archive cold data was posed recently for saving data center costs. Solid state drives are faster, more power-efficient and mechanically reliable than hard drives (HDs). However, flash of high density is vulnerable to charge leakage over time, and can only be cost-competitive to HD in archival systems if longer retention periods (RPs) are achieved. Moreover, the size of archival data grows exponentially each year, which makes finding the data we need more difficult.

This talk describes two examples of our on-going research to address the issues above. We first present the implementation of a coding technique named rank modulation (RM). RM reads data using the relative order of cell voltages, and is more resilient to retention errors. We show that combining RM and memory scrubbing provides more than 100 years of retention period for 1x-nm triple-level cell NAND flash. We then demonstrate an associative memory framework. The framework utilizes the random-access capability of flash memory, and solves word association puzzles with good precision and fast speed using crowd-sourced data. We show the similarities between puzzle solving and data retrieval, and discuss our plans on expanding the current framework for more realistic data retrieval applications.

Bio: Yue is a postdoctoral fellow at California Institute of Technology. His research focuses on algorithms and data representations for emerging non-volatile memories. Yue worked as a research intern at LSI in 2013. He received Ph. D. in computer science
from Texas A&M University in 2014.

02 בנובמבר 2015, 15:00 
חדר 011, בניין כיתות-חשמל  

עמודים

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות
שנעשה בתכנים אלה לדעתך מפר זכויות נא לפנות בהקדם לכתובת שכאן >>