חוקרים מהפקולטה להנדסה הדגימו שיטה חדשה ליצירת אור המגיע ליעדו יותר מהר או יותר לאט ממהירות האור - ללא הפרה של שום חוק יסודי של הטבע

עבודתו של פרופ' אלון באב"ד יחד עם הדוקטורנטים לירן הראלי ותומאס זכריאס התפרסמה בעיתון היוקרתי Lasser and Photonics Reviews, מביאה לעולם האופטיקה שיטה גמישה ובלתי תלויה כלל בתווך שבין מקור האור לגלאי, אלא בתהליך המדידה וניתנת ליישום במערכות שונות ומגוונות

החוקר.ת מאחורי המחקר

כאשר שולחים פולס של אור נהוג להניח שהוא נע במהירות האור שגודלה בקירוב 300 אלף ק״מ בשנייה. אולם תמונה זו אינה מדויקת. הדבר נכון בחלל החופשי, בואקום, אולם ישנן דרכים בהן מהירות האור יכולה להיות שונה, לפעמים במעט, לפעמים בהרבה ממהירות זו, אשר מקובל לסמנה באות c .

 

יצירת אור חדש

כאשר אור מתקדם למשל בחומר שקוף, כמו האטמוספירה שלנו, חלק מהפוטונים, הם החלקיקים מהם מורכב האור, נבלעים בחומר ופוטונים חדשים נפלטים ממנו. אותם פוטונים מצטרפים לפוטונים שלא נבלעו והם יוצרים אור חדש, ששונה במעט מהאור לפני שהגיב, עם החומר. אותו שינוי מתבטא בכך שמהירות האור הפכה למעט יותר קטנה, בשבריר של אחוז מזה שנמצא בואקום. בהתקדמות בחומר שקוף נוזל או מוצק, האינטראקציה עם החומר משמעותית יותר מאחר שצפיפות האטומים גדולה, והאטה במהירות האור יכולה להיות משמעותית.

לֹמשל במים, האור מתקדם במהירות נמוכה בכ-25 אחוז מאשר בואקום, ובגבישים שקופים מהירות האור יכולה להיות חצי ממהירות האור בואקום. כל אלה הם עדיין מהירויות גבוהות מאוד, הנחשבות לטבעיות, במובן שהן נפוצות בטבע.

 

אור איטי, אור מהיר

כיום יודעים לייצר במעבדות אור שנע במהירויות מאוד איטיות – פי עשרות אלפים ממהירות האור בואקום. הדבר מתאפשר בעזרת מערכות תהודה – מערכות בהן אור בתדר מאוד מסוים מגיב בצורה מאוד חזקה עם החומר. ניתן לייצר מערכות תהודה בעזרת מהודים -  מבנים גאומטריים בהם אור יכול לנוע הלוך ושוב באותו מסלול במשך זמן רב. דרך נוספת לייצור מערכות תהודה לאור, מערבת שליטה חיצונית במצב של האלקטרונים באטומים שבחומר. שליטה מתאימה משנה את הדרך בה החומר מגיב לפוטונים של האור ויכולה בכך לשנות את מהירות האור.

 

הדבר המפתיע במערכות תהודה לאור ושהן יכולות לשמש גם כדי לייצר אור שנע במהירות גבוהה ממהירות האור בואקום. לכאורה נראה שיש כאן סתירה לחוק בסיסי בטבע – שום דבר אינו יכול לנוע יותר מהר מהמהירות c, מהירות האור בואקום, אפילו לא אור. כיצד מיישבים סתירה זו? התשובה טמונה בדרך בה מודדים את מהירות הפולס, או – מה מודדים בדיוק. כאשר מודדים פולס של אור במיקום מסוים ועוקבים אחר עוצמת האור כפונקציה של הזמן, הגילוי מתחיל כאשר עוצמת האור עולה מעל לסף הרגישות של מכשיר המדידה ואז עוצמתו עולה בהדרגתיות עד לשיא ושוב יורדת. אם מודדים את פולס האור בשני מיקומים שהפולס נע ביניהם, ניתן למדוד דברים שונים. אם מודדים את הרגע בו מכשירי המדידה מצליחים לזהות לראשונה כי קיים אור (רגע זה מגדיר את חזית הגל של הפולס), אזי ניתן לוודא כי חזית הגל לעולם אינה נעה מהר יותר מ c. אך אם מודדים את השיא של הפולס, לעיתים שיא זה ינוע יותר מהר ממהירות האור בואקום. דבר זה מתרחש כאשר מצליחים לממש מערכת של אור מהיר ופרשנות סבירה לתהליך שקורה היא כזו: במהלך ההתקדמות במערכת פולס האור משנה את צורתו כך ששיא הפולס נע מהר יותר מ c, אך עדיין חזית הגל לעולם לא תנוע יותר מהר מ-c. ניתן גם להוכיח כי בכל המקרים של אור מהיר בלתי אפשרי להעביר אינפורמציה ממקום למקום במהירות גבוהה מ-c.

 

שימושים שונים לאור איטי ואור מהיר

אור איטי ואור מהיר זכו להתעניינות רבה במהלך השנים משום הפוטנציאל שיש להם לשימושים שונים כגון תקשורת אופטית, מחשוב אופטי וחישה אופטית. כעת, במעבדה של פרופ' באב"ד בפקולטה להנדסה הדגימו שיטה חדשה, שונה מאוד, לקבלת אור איטי ומהיר.

 

כאמור, העבודה נעשתה במעבדתו של פרופ׳ אלון באב״ד בפקולטה להנדסה ע״י הדוקטורנטים לירן הראלי ותומאס זכריאס והתפרסמה לאחרונה בכתב העת המדעי Lasers and Photonics Reviews. ייחודה של השיטה שהוצגה, שהיא אינה מערבת מערכת תהודה כלל וכלל והיא מתבססת על יצירת אור איטי או אור מהיר באמצעות תהליך המדידה עצמו.

 

כדי להבין את השיטה החדשה יש להבין כי מבחינה מתמטית כל פולס של אור מורכב מסכום אינסופי של גלים בעלי אמפליטודה (גובה מקסימלי של הגל) קבועה שמתנדנדים בקצב (תדר) מסוים מאוד, כאשר כל גל כזה קיים בכל זמן, כלומר מאז ומעולם ולנצח נצחים.

 

במציאות, גלים אלה אינם קיימים לנצח, אלא לאורך זמן מוגבל אך ארוך בהרבה מהזמן בו אנו מסוגלים למדוד את הפולס. אנו אומרים כי אוסף כל הגלים בתדרים השונים מתאבכים (מתחברים יחדיו) כדי ליצור את פולס האור. תכונה חשובה של פולסים היא כי אם מעלימים חלק מהגלים שמרכיבים את הפולס, הפולס החדש שנוצר יהיה ארוך יותר מהפולס המקורי. ככל שמסננים יותר גלים בעלי תדרים שונים, כך הפולס החדש יהיה ארוך יותר.

 

הניסוי

הניסוי שבוצע במעבדתו של פרופ׳ באב״ד התנהל באופן הבא: מערכת הניסוי ייצרה סידרה של פולסים אשר נשלחה לעבר גלאי. הפולסים הללו היו קצרים מספיק ומרוחקים מספיק האחד מהשני כך שניתן להתייחס אליהם כאל פולסים נפרדים היוצאים ומגיעים ליעדם האחד אחרי השני. זה המצב אם שום דבר מיוחד לא נעשה עם מערכת המדידה. אולם מה קורה אם למערכת המדידה מוסיפים אלמנט שבולע (משמיד) חלק מהגלים המרכיבים כל אחד מהפולסים הללו? אזי כל אחד מהפולסים מתרחב בזמן עד שהפולסים שהיו נפרדים כעת עולים האחד על השני ונוצר פולס חדש שהוא הסכום של כולם. זו שוב תופעת התאבכות. הייחוד בניסוי שנעשה הוא שאלמנט בולע כזה הוסף למערכת המדידה. יחד עם זאת הפולסים הנפרדים יוצרו מראש בצורה חכמה, כך שלאחר אלמנט הבליעה, ההתרחבות וההתאבכות – נוצר פולס יחיד חדש שהזמן בו הוא בשיאו ניתן להגדרה מראש, כך למשל יצרו בניסוי סדרה של פולסים שיצרו בתהליך המדידה פולס חדש שהגיע לפני הפולס הראשון בסדרה המקורית, זהו פולס שלכאורה נע יותר מהר ממהירות האור. באופן דומה גם יצרו סדרה אחרת של פולסים שהביאו בתהליך המדידה ליצירת פולס שהגיע יותר מאוחר מהפולס האחרון בסדרה המקורית, וזהו מימוש של אור שנע יותר לאט ממהירות האור.

חלק ממערך הניסוי. מעצב פולסים - המסוגל לייצר אות של אור המשתנה בזמן.

בתמונה: חלק ממערך הניסוי. מעצב פולסים - המסוגל לייצר אות של אור המשתנה בזמן.

 

על החיסרון והיתרון בשיטה החדשה

החיסרון בשיטה הוא שחלק גדול מהאור המקורי נזרק בתהליך המדידה ולכן אל הגלאי מגיעה בסופו של דבר כמות קטנה יחסית של אור, מה שמגביל את השימוש בשיטה ליישומים שאינם דורשים עוצמות אור גבוהות. אולם  היתרון בשיטה זו, בניגוד לשיטות המקובלות עד כה,  ליצירת אור איטי ומהיר שהיא אינה תלויה כלל וכלל בתווך שבין מקור האור לגלאי, אלא בתהליך המדידה, ומבחינה זו יש בה גמישות רבה וניתן ליישמה במערכות שונות ומגוונות.

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש
שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>