חוקרים הצליחו להפוך ננו-חלקיק של גיר שקוף לזהב מלאכותי

חוקרים מאוניברסיטת תל אביב פיתחו טכנולוגיה חדשה היכולה להפוך את חלקיק השקוף לנוצץ ונראה לעין למרות ממדיו הקטנים. החוקרים טוענים שהפיתוח החדש יכול לשמש כבסיס לתרופות חדשניות בתחום הסרטן.

החוקרים מאחורי המחקר

פריצת דרך בתחום "חומרי העל": לראשונה בעולם, חוקרים מאוניברסיטת תל אביב הצליחו לפתח טכנולוגיה חדישה אשר מצליחה להפוך ננו-חלקיק של גיר שקוף לדמוי זהב מלאכותי נוצץ. כלומר להפוך את החלקיק השקוף לנוצץ ונראה לעין למרות ממדיו הקטנים. החוקרים טוענים שהפיתוח החדש יכול לשמש כבסיס לתרופות חדשניות בתחום הסרטן.

 

הטכנולוגיה החדשה פותחה ע"י פרופ' גינזבורג וד"ר נוסקוב מהפקולטה להנדסה באוניברסיטת תל-אביב ומספר מעבדות המובילות בעולם ובראשן: פרופ' גורין (SkolTech), ד"ר שירשין ( (MSU  ופרופ' פלמינג (USYD). המחקר  התפרסם בכתב העת המדעי היוקרתי Advanced materials.

 

בטבע נמצאים מגוון רחב של חומרים עם תכונות שונות. האתגרים החדשים הניצבים היום בפני האנושות בתחומים רבים ממריצים מדענים בכל העולם לפתח חומרים בעלי תכונות שאינם מצויים בטבע. חומרים מהונדסים אלה נקראים חומרי על או מטא-חומרים. הדוגמא אולי המפורסמת ביותר למטא-חומר הם גבישים עם מקדם שבירה שלילי שנחקרו רבות והדגימו ביצועי-על בהדמיה אופטית ומגוון רחב של יישומים אחרים.

 

אחד השימושים הנוספים בחומרי-על שהחוקרים מאוניברסיטת תל-אביב יחד עם עמיתיהם מאוניברסיטאות מובילות בעולם חשבו עליו הוא בתחום הרפואה ובתחום הטרונוסטיקה בפרט. מדובר בפיתוח מבנים זהירים (ננו-חלקיקים) חכמים והכנסתם אל תוך גוף האדם במטרה לבצע דיאגנוזה וריפוי בו זמנית במידת הצורך, למשל כאשר מדובר בתאים סרטניים. הרעיון של החוקרים היה להנדס מטא-חומר שיוכל בו זמנית לחדור לתאים חיים, להיות ביוקומפטבילי (תואם ביולוגית), לשאת תרופה וגם שיזוהה על-ידי מכשירי הדמיה. וזה בדיוק מה שהם עשו.

 

במסגרת המחקר, החוקרים פיתחו שיטה שבאמצעותה הם הפכו ננו-חלקיק של גיר פורוזיבי שאינו נקלט באמצעות מכשירי הדמיה למעין זהב מלאכותי נוצץ. בעזרת החדרת חלקיקי זהב שגודלם 3 ננומטר בלבד לתוך הגיר בשיטה חדשה החוקרים הצליחו להנדס רזוננס פלזמוני של המבנה כולו ובעצם לשנות את התכונות האופטיות שלו (3 ננומטר - פי 30 אלף דק יותר מעובי שערה ולפחות פי 100 קטן יותר ממה שאפשר לראות במיקרוסקופ אופטי רגיל) זאת, באמצעות ננו-טכנולוגיות ושיתוף פעולה עם מומחי מיקרוסקופיית אלקטרונים שהצליחו לראשונה להגיע להישג המרשים.

 

ד"ר רומן נוסקוב מסביר שמדובר בפריצת דרך שתאפשר בהמשך להוסיף פונקציות נוספות למטא-חומרים ויהיו לכך שימושים בתחומים רבים: "לפלטפורמה שהצלחנו להנדס ניתן להוסיף פונקציות נוספות כגון נראות למכשיר MRI, הזנת תרופות, ואף להפוך אותה לננו-לייזר או אבקה לוזרת שיש לה שימושים רבים מסמנים ביולוגיים עד לצביעת מוצרי נוי ביתיים. פרט לכך, הטכנולוגיה החדשה של הפיכת גיר לזהב מלאכותי תוכל להוזיל משמעותית את תהליך הייצור של פלטפורמות שונות הן לתרופות והן להתקנים אלקטרואופטיים".

 

"במהלך המחקר הצלחנו להוכיח כי ניתן לחמם את החלקיקים שפיתחנו בעזרת לייזר" מוסיף פרופ' פבל גינזבורג. "כיוון שיש לנו שליטה מלאה על תדר הרזוננס של החלקיק אנחנו יכולים לחממו באמצעות לייזר אינפרה-אדום חודר רקמות – וזה המפתח לתרמוטרפיה. למשל, עליית טמפרטורה של כמה מעלות בקרבת גידול סרטני יכולה להשמיד אותו, אם כי הדרך לשיטת הריפוי עוד ארוכה בגלל שחייבים לעשות סידרת ניסויי המשך עם תאים חיים".

 

לינק לכתבה ב ynet

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>
אוניברסיטת תל-אביב, ת.ד. 39040, תל-אביב 6997801
UI/UX Basch_Interactive