המצפן של האלקטרון

כיצד אפשר לחקות התנהגות של חומרים מגנטיים לא יציבים על ידי גלי אור המתקדמים בגבישים מהונדסים? מחקר חדש של קבוצת חוקרים מהפקולטה להנדסה ומהטכניון פותח אפשרויות חדשות להעברה ועיבוד של מידע אופטי, ובפרט ליישומים בתחום התקשורת והמחשוב הקוונטיים.

החוקר מאחורי המחקר

על מנת להבין את האנלוגיה לחומרים מגנטיים ניזכר תחילה כיצד מחט המצפן יודעת להצביע על כיוון הצפון. הסיבה לכך היא שהמחט היא מגנט קטן, והשדה המגנטי של כדור הארץ מפעיל עליה כוח וגורם לה "להתיישר" כך שהחץ של המחט יצביע על הצפון.

 

תופעה דומה יכולה להתרחש כאשר אלקטרונים נעים בחומר מגנטי. בדומה למחט המצפן, גם האלקטרון מתנהג כמו מגנט קטן הנקרא ספין, ולכן אפשר לשלוט בתנועתו באמצעות שדה מגנטי. מחקרים שנעשו בשנים האחרונות גילו אפשרויות מעניינות לשליטה בזרם האלקטרונים באמצעות מצבים חדשים של חומרים מגנטיים, הקרויים "סקירמיונים", שבהם יש סידור מיוחד של השדה המגנטי בצורה המזכירה קיפוד ששוכב על הבטן – כל קוץ בגבו של הקיפוד מייצג את כיוון המגנט במקום מסוים במרחב. האתגרים המשמעותיים במחקר של חומרים אלה היא ביכולתנו לייצר את הקיפודים המגנטיים על צורותיהם השונות והמיוחדות. מסתבר שדווקא המבנים המגנטיים המעניינים יותר נוטים להיות לא יציבים, וכל הפרעה קטנה גורמת להם להתפרק ולאבד את צורתם.

 

פריצת דרך חדשה בנושא זה הושגה במחקר בהובלת הדוקטורנט אביב קרניאלי ומנחה הדוקטורט שלו, פרופ' עדי אריה, מבית הספר להנדסת חשמל בפקולטה להנדסה באוניברסיטת תל אביב. במחקר, שנערך עם פרופ' גיא ברטל והדוקטורנט שי צסס מהפקולטה להנדסת חשמל ע"ש ויטרבי בטכניון, מתוארת דרך שבה אפשר לגרום לקרני אור להתנהג כמו אלקטרונים עם ספין ולגרום לחומרים עם תגובה אופטית להתנהג כמו חומרים מגנטיים. "מכיוון שקל הרבה יותר להנדס אור וחומרים אופטיים, אפשר יהיה לחקור באמצעותם את התכונות של החומרים המגנטיים," אומר פרופ' אריה. "ב-30 השנים האחרונות הצטבר ידע עצום בתכנון של התקנים וטכנולוגיות בתחום המידע המגנטי, ועכשיו אפשר יהיה לקחת את הידע הזה ולייצר באמצעותו התקנים אופטיים."

בתמונה: הדוקטורנט אביב קרניאלי 

 

במאמר בחרו החוקרים לתת דוגמה להתקן עתידי שכזה, המבוסס על "אפקט הול הטופולוגי" – אפקט קוונטי המתרחש כאשר חלקיק ספין חולף ליד אותם "קיפודים מגנטיים". "אפשר לחשוב על האפקט הזה כמו 'בעיטת בננה' בכדורגל," מסביר אביב קרניאלי. "חלקיק שנע ליד סקירמיון מגנטי מעקל את מסלולו כתלות בכיוון הספין שלו, שזה דבר מאוד יעיל אם רוצים להחליט לאן עובר זרם – כמו מתג. בחומרים מגנטיים אמיתיים לא יודעים איך לשלוט באפקט הזה, אלא רק לראות שהוא קיים, ואנחנו מראים איך באמצעות האור אפשר לחקות את אפקט הול הטופולוגי כדי לחקור אותו, אבל גם כדי להשתמש בו למתגים מהירים".

 

התגליות הללו צפויות לפרוץ דרך לא רק בהבנתנו את החומרים המגנטיים, אלא גם לתת השראה להתקנים אופטיים חדשים השולטים באור, בדומה לדרך בה חומרים מגנטיים שולטים בזרמים מגנטיים. לדוגמה, החוקרים מעריכים כי המחקר עשוי להוביל לפיתוח טכנולוגיות חדשות להעברה ועיבוד של מידע אופטי. נוסף על כך, היכולות הקיימות כיום לשליטה בחלקיקי אור בודדים – פוטונים – יחד עם הרעיונות החדשים לעיבוד המידע המבוססים על הקיפודים המגנטיים, צפויים לפתוח דלתות וכיווני מחשבה נוספים לעיבוד אינפורמציה קוונטית באמצעות אלומות אור. 

 

פרופ' אריה מוסיף שההתקנים שאפשר לייצר אינם מוגבלים רק לדברים פשוטים כמו מתגים. "אחד הכיוונים המבטיחים ביותר בטכנולוגיות קוונטיות הוא השימוש בחלקיקים בודדים של אור, או בשמם המדעי פוטונים, לייצוג מידע. ההתקנים שאנחנו מציעים לא יעבדו רק עבור קרני אור רגילות, אלא גם עבור פוטונים בודדים, ובאותה היעילות. מאחר שכיום, פוטונים בודדים הם בחזית הפיתוח של תקשורת קוונטית ומחשבים קוונטיים, יכול להיות שהתגלית שלנו תאפשר דרכים חדשות ויעילות יותר להעביר ולעבד מידע קוונטי בצורה אופטית."

 

המחקר נתמך ע"י הקרן הלאומית למדע. אביב קרניאלי ושי צסס הם זוכי מלגת אדמס של האקדמיה הלאומית למדעים. 

 

אלה שמתאהבים בבעיה הם אלה שממציאים לה פתרון

אוניברסיטת תל אביב עושה כל מאמץ לכבד זכויות יוצרים. אם בבעלותך זכויות יוצרים בתכנים שנמצאים פה ו/או השימוש שנעשה בתכנים אלה לדעתך מפר זכויות, נא לפנות בהקדם לכתובת שכאן >>
אוניברסיטת תל-אביב, ת.ד. 39040, תל-אביב 6997801
UI/UX Basch_Interactive